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Abstract

In recent years, there has been a resurgence of interest in the design of asynchronous cir-
cuits due to their ability to eliminate clock skew problems, achieve average case perfor-
mance, adapt to processing and environmental variations, provide component modularity,
and lower system power requirements. Traditional academic asynchronous designs methods
use unbounded delay assumptions, resulting in circuits that are verifiable, but ignore timing
for simplicity, leading to unnecessarily conservative designs. In industry, however, timing
is critical to reduce both chip area and circuit delay. Due to a lack of formal methods
that handle timing information correctly, circuits with timing constraints usually require
extensive simulation to gain confidence in the design.

This thesis bridges this gap by introducing timed circuits in which explicit timing infor-
mation is incorporated into the specification and utilized throughout the design procedure
to optimize the implementation. Our timed circuits are more efflicient than those produced
using untimed methods and more reliable than those produced using ad hoc design tech-
niques. Timing analysis, however, often introduces substantial complexity into the design
procedure, and has hitherto either been avoided, simplified, or considered only after syn-
thesis. In this thesis, we describe an exact and eflicient timing analysis algorithm, and its
application to the automatic synthesis and verification of gate-level timed circuits. Our
synthesis procedure generates hazard-free timed circuits and maps the resulting implemen-
tations to practical, semi-custom gate libraries. The resulting implementations are up to
40 percent smaller and 50 percent faster than previous asynchronous designs. We also
demonstrate that our timed designs can be smaller and faster than their synchronous coun-
terparts. After back-annotating the synthesized circuits, our verification procedure checks
that all circuits satisfy their specifications. This procedure has also been applied to a wide

collection of highly concurrent timed circuits that could not previously be verified.

v
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Chapter 1

Introduction

all pain disappears it’s the nature of my circuitry
—nine inch nails

I must govern the clock, not be governed by it.

—Golda Meir

There has been a recent resurgence of interest in the design of asynchronous circuits due
to their potential to provide more robust, higher performance, and lower power imple-
mentations. Unfortunately, these advantages have not yet been fully realized as current
asynchronous design methodologies either produce inefficient or unreliable designs. Tra-
ditional academic asynchronous design methodologies use unbounded delay assumptions,
resulting in circuits that are verifiable, but ignore timing for simplicity, leading to unneces-
sarily conservative designs. In industry, however, timing is critical to reduce both chip area
and circuit delay. Due to the lack of formal methods to handle timing information correctly,
circuits with timing constraints usually require extensive simulation to gain confidence in
the design. Simulation, however, is not perfect so unreliable designs can be produced. This
fact has proven to be a major stumbling block to the widespread acceptance of asynchronous
circuits within industry.

This thesis bridges this gap between academia and industry by introducing timed cir-
cuits in which explicit timing information is incorporated into the specification and utilized
throughout the design procedure to optimize the implementation. Timed circuits can be
significantly smaller and faster than those produced using traditional formal methods, and

they are more reliable than those produced using ad hoc techniques. The specification



CHAPTER 1. INTRODUCTION 2

of timing constraints also facilitates a natural interaction between synchronous and asyn-

chronous circuits.

1.1 Asynchronous Circuit Design

An asynchronous circuit is one in which synchronization is performed without a global
clock. Asynchronous circuits have several advantages over their synchronous counterparts

including:

1. Elimination of clock skew problems. As systems become larger, increasing amounts of
design effort is necessary to guarantee minimal skew in the arrival time of the clock
signal at different parts of the chip. In the DEC alpha microprocessor, nearly a third of
the silicon area is required for the clock distribution network [25]. In an asynchronous
circuit, skew in synchronization signals can be tolerated, so this extra circuitry is not

necessary.

2. Average-case performance. In synchronous systems, the performance is dictated by
worst-case conditions. The clock period must be set to be long enough to accommo-
date the slowest operation even though the average delay of the operation is often
much shorter. In asynchronous circuits, the speed of the circuit is allowed to change

dynamically, so the performance is governed by the average-case delay.

3. Adaptivity to processing and environmental variations. The delay of a VLSI circuit
can vary significantly over different processing runs, supply voltages, and operating
temperatures. For this reason, synchronous designs are simulated over a wide variation
of these parameters, and the clock is set so that the majority of chips produced
operate correctly under some allowed variations. Due to their adaptive nature, an
asynchronous circuit operates correctly under all variations and simply speeds up or

slows down, as necessary.

4. Component modularity. In an asynchronous system, components can be interfaced
without the difficulties associated with synchronizing clocks in a synchronous system.
Also, when a new faster component becomes available, it can often be easily inserted
into the system without requiring any other changes to the rest of the system resulting

in a corresponding improvement in system performance.
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5.

Lower system power requirements. Asynchronous circuits reduce synchronization
power by not requiring additional clock drivers and buffers to limit clock skew. They
can also automatically power down unused components. In many synchronous appli-
cations, more than half of the power is wasted with spurious transitions [63]. Asyn-
chronous circuits have no spurious transitions. Finally, asynchronous circuits can

easily be adjusted to make efficient use of a dynamic power supply.

While asynchronous designs have long been used in interface circuits, they are now

being considered for the design of high-performance processors [45, 76, 27, 55] and low-

power embedded controllers and portable devices [71]. Unfortunately, the advantages of

asynchronous circuits have not yet been fully realized for several reasons, including;:

1.

Lack of mature computer-aided design tools. In the past several years, there has been a
rapid development of commercial VLSI design tools. These tools, however, are limited
to synchronous designs. While many asynchronous design methods have supporting

CAD tools, these tools are still in the experimental phase.

. Large area overhead for the removal of hazards. A hazard is a spurious signal tran-

sition, or glitch. While hazards can be ignored in a synchronous design as they are
filtered out by the clock signal, any hazard in an asynchronous design can potentially
lead to a malfunction. Therefore, careful design is necessary to avoid hazards in an

asynchronous design which often leads to a significant increase in circuit area.

. Difficulty in interfacing with existing synchronous designs. Many asynchronous de-

sign methods require the ability to slow down the environment by withholding an
acknowledgment. When interfacing with a synchronous design, this is typically not

possible.

. Necessity for custom design. As the pace of technology increases, the life spans of

products decrease forcing the VLSI industry to often turn to semi-custom components
such as standard-cells and gate-arrays to improve time-to-market. However, many

asynchronous design procedures require the use of special complex-gates.

Unreliable designs. In order to get efficient implementations, many asynchronous
circuit designers play tricks and make assumptions which must be checked with simu-

lation. Unfortunately, simulation is not perfect so unreliable designs can be produced.
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This thesis addresses each of these issues by developing computer-aided design tools that
make use of timing throughout the design procedure to produce both efficient and reliable
designs that can be mapped to practical gate libraries and interfaced with synchronous
designs. This thesis concentrates on the automated design of control circuits, since, due
to their regular geometry, datapath modules are usually custom designed to optimize for
performance. The various techniques for the design of asynchronous datapaths such as
dual-rail encoding and bundled data are described in [67, 13, 22, 21, 44, 47].

Many other techniques have been proposed for the design of asynchronous control cir-
cuits. The rest of this section briefly describes several of these approaches categorized by

their timing model. For a more complete description, please see [30].

1.1.1 Delay-Insensitive Circuits

A delay-insensitive circuit is one in which its correctness is independent of both gate and
wire delays. In [43], Martin proved that when the gate-library is restricted to single-output
gates, this class of circuits is severely limited to those which use Muller C-elements, an
asynchronous memory element, as the only multiple-input gates.

In order to address this problem, many researchers introduce several specially designed
multiple-output complex gates. Molnar, et. al. [48] developed a technique which used
carefully designed modules which are composed in a delay-insensitive manner. These mod-
ules could be either clock-free with internal delay elements to guarantee correctness or
locally-clocked Q-modules. Other module-based delay-insensitive design procedures exploit
higher-level descriptions such as Occam [13] used by Brunvand or a trace-based language [26]
proposed by Ebergen. Automatic compilation techniques are applied to these higher-level
descriptions to produce circuit implementations using complex-gate modules.

The major advantage of delay-insensitive designs is modularity. Delay-insensitive mod-
ules are easily composed without needing to worry about gate or wire delays. They are very
robust and can achieve average-case performance. Unfortunately, they have several serious
disadvantages. There can be a large area and delay overhead to achieve delay-insensitivity.
It is also impossible for a delay-insensitive design to interface delay-insensitively with a
synchronous environment. Finally, the modules required can be large and complex custom

designed gates which may be difficult to design reliably.



CHAPTER 1. INTRODUCTION 5

1.1.2 Quasi-Delay Insensitive and Speed-Independent Circuits

Many methodologies have been proposed for the synthesis of quasi-delay insensitive and
speed-independent circuits in which correctness is independent of gate delays but delays
of certain wire forks called isochronic forks are negligible. The main difference between
quasi-delay insensitive and speed-independent circuits is that all forks in speed-independent
circuits must be isochronic.

A quasi-delay insensitive design technique was proposed by Martin [44] which begins
from a high-level specification using a modified version of Hoare’s communicating sequential
processes (CSP) [33] which is systematically translated to a circuit implementation. A
similar technique proposed by van Berkel [69] automatically compiles a circuit described
using a language called Tangram to a handshake circuit implementation. Several speed-
independent design techniques are based on the signal transition graph (STG) specification
such as the work by Chu [17] and Meng [47]. The work by Chu and Meng, however, often
produce circuits that require large complex atomic gates. To address this problem, Beerel
et. al. [7] developed constraints to add to the synthesis method to produce implementations
using only basic gates such as AND gates, OR gates, and C-elements. Since then there has
been some additional work in this area by Lin and Lin [42] and Kondratyev et. al. [37].

The primary advantage of quasi-delay insensitive and speed-independent circuits over
delay-insensitive designs is the ability to map the design to basic gates thus allowing
semi-custom implementations. However, careful design is necessary to guarantee that the
isochronic fork assumption is met. There still can be significant area overhead associated
with the need to remove hazards in these circuits. Finally, quasi-delay insensitive and

speed-independent circuits cannot be interfaced with synchronous environments.

1.1.3 Fundamental-Mode Circuits

Other design methods use the fundamental-mode assumption which takes advantage of
timing properties in a limited way by assuming that the environment must wait long enough
for the circuit to stabilize before inputs are changed. To achieve this, these techniques must
assume that the gate and wire delays are bounded.

Techniques using the fundamental-mode assumption originated with Huffman [34], and
were later extended by Unger [68]. Original fundamental-mode techniques allowed only a

single input to change at a time. Recently, Davis’s group at Hewlett Packard [20] extended
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fundamental-mode to allow multiple input change. Nowick developed a locally-clocked
method based on this work [57], and Yun introduced a clock-free method [83].

By assuming that the circuit has a bounded delay, it is now possible to construct asyn-
chronous circuits which interface with synchronous environments such as the DRAM con-
troller from [58]. Siegal [65] has also shown that with minor modifications that standard
synchronous technology mapping techniques can be applied to map these designs to practical
semi-custom gate libraries. However, these circuits may require additional delay elements
to guarantee that the fundamental-mode assumption is met, degrading the performance.
Also, the fundamental-mode assumption must be guaranteed to hold under all operating
conditions, so these circuits may not be able to take full advantage of variations in de-
lay such as those resulting from data-dependencies. Finally, since these methods limit the

concurrency within a circuit, they may result in inefficient implementations.

1.1.4 Timed Circuits

Timed circuits are a class of asynchronous circuits that incorporate explicit timing infor-
mation during some portion of synthesis. This timing information is typically given as
bounds on gate, wire, and environment delays. Many of the asynchronous designs done in
industry today are timed. That is, their correctness is dependent on meeting certain timing
constraints. However, the techniques used for the design of these circuits are typically ad
hoc, and can result in unreliable designs.

Some systematic techniques exist for the design of timed circuits. Borriello describes in
[9] a method which uses timing information in the design of transducers, interfaces between
synchronous and asynchronous circuits. Lavagno in [38] develops a synthesis technique
which uses methods similar to Chu [17] and Meng [47] to get a complex gate implementation
which is then mapped to a gate library using synchronous technology mapping techniques.
In both of these approaches, timing analysis is applied only after synthesis to verify that
hazards do not exist. If hazards are detected, delay elements are added to avoid them,
degrading the reliability and performance of the implementation. Beerel et. al. has shown
in [7] that the more conservative speed-independent model while resulting in somewhat
larger circuits actually produces faster circuits compared with the timed circuits described
in [38]. This surprising result can be attributed to the fact that these timed circuits often

need to have delay elements added to the critical path to remove hazards.



CHAPTER 1. INTRODUCTION 7

1.2 Contributions

The major contribution of this thesis is a new automatic method for the synthesis and veri-
fication of gate-level timed circuits. The development of a systematic design procedure that
incorporates timing information bridges the gap between systematic, untimed asynchronous
design methods in academia and ad hoc, timed asynchronous design methods in industry.
The resulting implementations are both more efficient than previous untimed methods and
more reliable than previous timed methods. The specification of timing constraints also
facilitates a natural interaction between synchronous and asynchronous circuits.

We outline our contributions in more detail, as follows:

We have proposed a methodology for the specification of timed circuits using a high-level
language description. The specification is capable of specifying causality, concurrency, and
conditional behavior, or choice, and it is shown to be general enough to specify practical
systems. We have also developed procedures for the automatic compilation of this high-
level language into a lower-level graphical representation which is conducive to automated
timing analysis procedures.

We have developed two efficient timing analysis algorithms. One is a heuristic algorithm
used to find the time difference between any two events in a deterministic graphical specifi-
cation. The other is an exact and efficient method of exploring the timed state space using
geometric regions and partial order information. We have applied these timing analysis
algorithms to both the synthesis and verification of timed circuits.

To address synthesis, we have created a complete synthesis procedure from a high-level
language to a hazard-free timed circuit. A design strategy and correctness constraints are
derived to facilitate the use of semi-custom components. Since the synthesis procedure
utilizes the timing information throughout the design procedure to optimize the implemen-
tation, extra circuitry is only added to remove hazards that are shown to be able to occur
under the given timing constraints. Therefore, our timed circuits can be significantly smaller
and faster than those produced using traditional untimed methods. Our synthesis proce-
dure has been fully automated in the CAD tool ATACS and applied to several examples. The
resulting timed circuit implementations are not only up to 40 percent smaller and 50 percent
faster than implementations produced using other asynchronous design methodologies, but

also they are can be smaller and faster than their synchronous counterparts.
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We have developed an automated procedure for the technology mapping of our timed
circuits to practical gate libraries. After using our synthesis procedure to generate a
technology-independent timed circuit netlist, the procedure then investigates simultane-
ous decompositions of all high-fanin gates by adding state variables to the the specification
and performing resynthesis. Although multiple decompositions are explored, timing in-
formation is utilized to significantly reduce their number. Once all gates are sufficiently
decomposed, the netlist can be mapped to the given gate library, taking advantage of any
compact complex gates available.

To address verification, we have developed a complete verification procedure capable
of checking that the circuit that is built satisfies its original specification. After synthesis,
the timed circuit implementation is back-annotated with bounds on the minimum and
maximum delay of each gate taken from the given cell-library and verified to satisfy its timed
specification. The verification procedure has also been fully automated, and it is shown to
be able to rapidly verify larger, more concurrent timed circuits than could previously be

verified using traditional techniques.

1.3 Thesis Overview

A circuit is initially described using a high-level specification language. Chapter 2 describes
both the formal syntax and semantics of the initial specification language.

In order to perform synthesis or verification it is necessary to determine the reachable
state space of the system under consideration. For timed systems, this requires an efficient
timing analysis algorithm. Chapter 3 describes two timing analysis algorithms including an
exact and efficient timing analysis algorithm used in the subsequent chapters for synthesis,
technology mapping, and verification.

Chapter 4 describes the complete synthesis procedure from a high-level language specifi-
cation to a hazard-free gate-level timed circuit implementation. This chapter first develops
correctness constraints at a theoretical level which must be met by the synthesis procedure.
Then, it describes the synthesis algorithms in detail.

Chapter 5 describes a procedure to map our timed circuits to practical gate libraries.
In particular, this chapter describes a new technique to decompose high-fanin gates. This
decomposition technique uses an iterative procedure to guarantee correctness under the

given timing constraints.
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In order to illustrate the use of the timed circuit design procedure, chapter 6 presents
several design examples.

Once the circuit is synthesized, it is back-annotated with delays from the given gate
library and verified. Chapter 7 describes the verification procedure.

Finally, chapter 8 gives our conclusions and some ideas for directions of future research.



Chapter 2

Timed Specifications

...an event is an action which one can choose to regard as indivisible

—it either has happened or has not according to our description of some process.
This is not to say that an event is indivisible, and without detailed structure,

... historians may talk of the event of a battle or the birth of a famous person
—not just single events to the people involved at the time!

—Glynn Winskel

The first step in any design is to specify what is to be built. Many approaches have
been taken for the specification of asynchronous circuits. Some approaches use languages
such as communicating sequential processes (CSP) [44], Occam [12], and Tangram [70].
Other approaches use graphs such as I-nets [48], signal transition graphs [17] [47], change
diagrams [75], burst-mode state machines [20] [56] [81], and state graphs [7]. While graphs
are conducive to automated timing analysis and synthesis algorithms, they are cumbersome
for specifying a large system. Languages, however, allow large designs to be specified clearly
and concisely. For these reasons, we use a language as the initial specification of our timed
designs which is then compiled as described in the next chapter to a graphical representation
for timing analysis. This chapter formally defines both the syntax and semantics of our

specification language.

2.1 Timed Handshaking Expansions

Our timed circuits are specified using timed handshaking expansions (HSE). These specifi-
cations are easily derivable, as illustrated in an example later, using techniques similar to

those described in [44] from a higher-level description in Martin’s version [44] of Hoare’s

10
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CSP language [33]. The syntax of the timed HSE language is described in this section.
The untimed portion of the timed HSIE language is similar in form to Martin’s handshaking
expansions used in the design of speed-independent asynchronous circuits [44]. Timing is
added to the specification by associating a lower and upper bound on the delay of each
signal transition in the signal’s declaration.

In this section, each language construct is first described informally, and at the end
of each subsection the syntax rules of the language constructs are given using an abstract
grammar. An abstract grammar is a common way of providing a semi-formal description of
a language concisely by ignoring issues such as precedence and ambiguity. The language is
defined precisely using a BNF description in an appendix at the end of this chapter. In the
abstract grammar notation, the left-hand side and right-hand side are separated by “::=".
If there are multiple alternatives on the right-hand side, they are separated by “|”. In the
syntax rules, boldface words denote keywords, words enclosed in angle brackets “( )” denote
language constructs which are described by other syntax rules, italicized words denote
language constructs which are only informally described in the text, and “ID” represents

an identifier.

2.1.1 Modules, Signal Declarations, and Processes

A module specified in the timed HSE language is composed of two parts: a set of signal
declarations and a set of concurrent processes executing in parallel. The signal declarations
are used to specify attributes for each signal wire. FEach declaration consists of a type
(either input or output), a signal name, an initial value (either true or false), and delays
associated with transitions on the signal. A delay is given in the form: (I, u,;{s, us) where
[, and u, are the lower and upper bounds on a rising transition and /; and u; are the
lower and upper bounds on a falling transition. If the fall times are not specified, they are
assumed to be equal to the rise times. The lower bounds are nonnegative integers, and the
upper bounds are an integer greater than or equal to the lower bound, or oc. Since real
values can be expressed as rationals within any required accuracy, restricting the bounds
to be integers does not limit the expressiveness. Since there are only a finite number of
timing parameters, if any are rational, we can multiply all of them by the least common
denominator. The processes are used to specify the behavior of a module. Each process
consists of a set of commands as described in the following two subsections. The parts of

the grammar just described are shown in Figure 1.
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(module) := module ID;(sigdecl)({process) endmodule
(sigdecl) == (sigdecl)(sigdecl) | type ID = {initial, delay };
(process) = (process)(process) | process ID;(cmd) endprocess

Figure 1: Modules, signal declarations, and processes.

2.1.2 Basic Commands and Their Composition

Each basic command is an event. An event specifies when a signal transition can occur.
There are two transitions associated with each signal s in a specification, namely, s | where
1 denotes that the signal s is changing from a low to high value, and s | where | denotes
that the signal s is changing from a high to low value. The language also includes a skip
event which does nothing and terminates immediately. Commands can be executed either
in sequence (denoted Cy ; Cy ) or in parallel (denoted Cy || Cy ). The constructs just

described are shown in Figure 2.

{cmd)

(event)

{cmd); (cmd) | (cmd)||(cmd) | (event)
ID 7 |ID | | skip

Figure 2: Basic commands and their composition.

2.1.3 Guarded Commands

In addition to sequential and parallel composition, commands within a process can also be
composed in conflict to specify a choice of behavior made by the environment. Conflict, or
choice, is represented with a set of guarded commands (denoted [ Gy — C1 | ... | G, —
Cy ] ). The guard GG; of a guarded command is a boolean expression over a set of events. The
events in this expression can be composed conjunctively (denoted e; A...Ae,) in which the
expression evaluates to true when the process has seen all the events in the set. Mutually
exclusive events can also be composed disjunctively (denoted e; V ...V e,) in which the
expression evaluates to true when the process has seen exactly one event in the set. The

expression may also include a combination of conjunctive and disjunctive clauses. Finally,
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an expression may simply be the skip event which evaluates to true immediately. The
expressions in our language differ from those used by Martin [44] in that ours are based on
predicates on events rather than on predicates on signal values. This change in semantics
is made because the representation used by our timing analysis algorithm is event-based.

When a guarded command is encountered, execution stalls until one of the guards G
evaluates to true, after which the commands C; associated with the guard that is satisfied
are executed. If multiple guards evaluate to true, then one guard is nondeterministically
chosen. Qur synthesis procedure allows input choice but does not allow output choice,
such as arbitration, so a specification must guarantee that either all expressions in a set
of guarded commands are mutually exclusive, or that the first events in each set of non-
mutually exclusive guarded commands is on a signal of type input. If an arbiter is needed
in the design, it can be added as a special environment process.

A guarded command may also loop (denoted G; — Cy; %) [15]. If a guarded command
that loops is selected, then after the set of commands is executed, control is returned to the
beginning of the gnarded command. This looping continues until a guarded command that
does not loop is selected.

The timed HSE language makes use of abbreviations for two commonly used guarded
command constructs [15]. The first is that a guarded command of the form [ — skip]
may be written as [G] which is called a wait. A wait simply specifies that the process
must stall until the expression associated with the guard evaluates to true. The second
abbreviation is that a guarded command of the form [skip — C'; %] may be written as *[(]
which represents an infinite repetition of a set of commands. The parts of the grammar

agsociated with guarded commands are shown in Figure 3.

{cmd
(gdcmdset
(gdemd

(expr

[(gdemdset)] | [(expr)] |  [{cmd)]
(gdcmdset)|(gdemdset) | (gdemd)
(expr) — (cmd) | (expr) — (cmd);*
(expr) A {expr) | (expr) V {expr) |

)
) n=
)
)

Figure 3: Guarded commands.



CHAPTER 2. TIMED SPECIFICATIONS 14

2.1.4 Example

As an example, consider the specification of a port selector (SEL) which is given in CSP in
Figure 4(a). The CSP language includes all the constructs from the timed HSE language,
as well as additional types of events to communicate on ports. A port is one side of a
communication channel between two concurrent processes. A communication on a port is
used for synchronization of the processes, and it may also be used to transmit data between
them. Ports can be of either passive or active type. A port is passive if communications on
the port are initiated by the environment process, and a port is active if communications
are initiated by the process being designed. In the SEL, the zfer port is passive and all the

other ports are active.

sl 8L sei2;

Tl

*[ [ xfer - (data || sel?(sell, sel2) ); |, outl,
[ sell - outl; xfer xferj | «— outl;
| sel2 - out2; xfer xfer,e— SEL | out2,

11 +— out2;
data} Tdatai

@) (b)
Figure 4: (a) CSP specification and (b) block diagram for a port selector (SEL).

The basic operation of the SEL is as follows. First, the SEL waits until it gets a
request for a data transfer (i.e., zfer), then it concurrently issues requests for the data to be
transferred (i.e., data) and for the selection of an output port (i.e., sel?(sell,sel2)). After
the SEL receives the data and the port selection (i.e., self or sel2), it initiates the transfer
of the data onto the selected output port (i.e., out! or out2) and then acknowledges the
completion of the data transfer (i.e., zfer).

A timed HSE specification is derived from a CSP specification by translating all the
communications on ports to their corresponding signal transitions that implement the com-
munications. These communications can be implemented in many ways. The most common
methods use either a two-phase handshaking or four-phase handshaking protocol. In both
methods, a simple synchronization communication is implemented with two wires, one for
requests and one for acknowledgments. In the two-phase method, both the rising and falling
transitions represent requests and acknowledgments. It is called two-phase because a cycle

involves two transitions, one request and one acknowledgment. In the four-phase method,
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only one type of transition (either the rising or the falling transition) represents a request
or acknowledgment, and before another request or acknowledgment the corresponding wire
must return to its original value. Thus, this protocol requires four transitions in a cycle.
While either protocol could be specified and implemented, we use the four-phase protocol
because it typically results in simpler logic.

Returning to the SEL, the signal wires that implement the communications in the CSP
specification are shown in the block diagram in Figure 4(b). For example, the zfer commu-
nication is implemented with two wires, one request wire zfer; and one acknowledge wire
zfer,. The port selection selis implemented with three wires, one request wire sel, and two
data wires sell; and sel2;.

The first step in translating the CSP specification to a timed HSE specification is to
create declarations for each signal wire that is needed to implement the communications
in the CSP specification. Finding the delays, or timing constraints, to associate with the
transitions on these signal wires is not a trivial task. The timing constraints for input signal
transitions can usually be determined from interface specifications or datapath delay esti-
mates. The timing constraints for output signal transitions, however, presents a “chicken
and egg problem”, since the timing constraints cannot be known until the circuit is syn-
thesized, but the circuit cannot be synthesized without giving the timing constraints. The
traditional delay-insensitive or speed-independent approaches assume no timing informa-
tion. In other words, they assume that delays can be anywhere from 0 to infinity. This
conservative assumption can often lead to unnecessarily complex circuit implementations.
It is quite reasonable, however, to expect an automatic analysis of the given gate library
to produce a safe estimate of the maximum delay for the gates in the library to be used,
and by making some assumptions about the complexity of the synthesized logic, this can
be used to set the upper bound of the timing constraint for each output signal transition.
The lower bound of the timing constraint should usually be set to a very low value since
optimizations could potentially reduce the gate to nothing more than a wire. After the cir-
cuit is generated, it must be back-annotated with timing information from the gate library
and verified to be correct which is the subject of Chapter 7. If the circuit fails verification,
it must be resynthesized with more conservative timing constraints (larger upper bounds
and/or smaller lower bounds). In order to avoid resynthesis, conservative values should
be used for timing constraints on output signal transitions. Of course, more aggressive

estimates of the gate delays can be used leading potentially to better implementations, but
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may require more iterations of the synthesis procedure. In the design of interface circuits
and other controllers, inputs often are from off-chip or from a datapath. In these cases, the
lower bound of the timing constraints on input signal transitions is large compared with
the upper bound of the timing constraints on output signal transitions. Therefore, a con-
servative estimate for gate delays may not significantly affect the complexity of the timed
circuit implementation.

The next step is to translate each communication on a port to its corresponding signal

transitions. A communication on a passive port such as the zfer port is expanded as follows:

[efer; 1]; afer, 1; [wfer; |]; afer, |

The placement of the first wait is dictated by the probe on the zfer port (i.e., zfer). The
probe is used to test if there is a pending communication on a passive port. The rest
of the communication on the passive zfer port are expanded where the communication is
completed (i.e., zfer).

A communication on an active port such as the data port is expanded as follows:
data, 1;[data; 1]; data, |;[data; |]

As an optimization, however, an active port is usually implemented using a lazy-active

protocol [44] which is expanded as follows:
[data; |]; data, T; [date; 1]; data, |

In this protocol, the reset of the four-phase handshake (i.e., the falling transition of the
input wire) does not delay the execution until a new request on the active port is necessary.
Note that since the data; wire is initially low, the first wait is vacuous. A vacuous event
is one which is ignored in the initial cycle because it is the first event on that signal, and
the event would set the value of the signal to its initial value. The two output ports out?
and out? are similarly expanded. The sel port is slightly different in that there are two
input wires associated with it that carry the data of which port is to be selected. Therefore,
the request on this port must wait on either the falling transition of the sell; wire or the
sel?; wire depending on what port was used in the previous cycle. After a port selection
is requested by rising the output wire sel,, one of the two input wires sell; or sel?; is set
high by the environment. Part of the initial timed HSE specification for the SEL module is

shown in Figure 5 including the signal declarations that implement the sel port, the control
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process (selctrl ) being designed, and the environment process (sel ) which makes the choice

of which output port to use.

module SFL;
input sell; = {false, (40,260; 2, 40) };
input sel2; = {false, (40,260; 2, 40) };
output sel, = {false, (0,20)};
etc.
process selctrl;
« [ [ afer; 1— (([data; |]; data, 1) || ([sell; | V sel2; |]; sel, 1)); [date; T];
[ sell; T — (sel, | || data, |);[outl; |]; outl, T;[outl; 1]; outl, |;zfer, 1;[afer; |]; afer, |
| sel2, 1 — (sel, | || data, |);[out2; |]; out2, 1;[out2; 1]; out2, |;zfer, 1;[zfer; |]; afer, |
111
endprocess
process sel;
[ [sel, 1];[ skip — sell; 1;[sel, |]; sell; |
| skip — sel2; 1;[sel, |]; sel2; |
1]

endprocess
etc.
endmodule

Figure 5: Part of the timed HSE specification for the SEL.

The CSP specification dictates the ordering of communications on the ports, but many
different timed HSE specifications using the corresponding signal wires could implement the
communications. After expanding these communications, the resulting signal transitions
can often be reshuffled to optimize the implementation [44]. In particular, there is typically
a great deal of flexibility in the placement of the initiation of the reset of each four-phase
handshake (i.e., the falling transition of the output signal wire for active ports). One possible

reshuffling of these transitions is shown in Figure 6.

process selctrl;

« [ [ afer; 1— (([data; |]; data, 1) || ([sell; | V sel2; |]; sel, 1)); [date; T];
[ sell; | A outl; | — outl, 1;sel, |;[outl; 1]; (afer, | || data, |); outl, |;[afer; |]; zfer, |
| sel2 T A out?; | — out2, 1;sel, |;[out2; 1]; (afer, | || data, |); out2, |;[afer; |]; afer, |
111

endprocess

Figure 6: Reshuffling of the selctri process.
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2.2 Timed Event-Rule Structures

In order to define the behaviors specified by a module in the timed HSE specification lan-
guage, we introduce timed event-rule (ER) structures, a variant of Winskel’s event structures
with timing. Event structures were introduced by Winskel [77], and timing has been added
to them in several ways. Subrahmanyam added timing to event structures using temporal
assertions [66]. Burns introduced timing in a deterministic version, the event-rule (ER)
system, in which causality is represented using a set of rules, and a single delay value,
rather than a bound, is associated with each rule [16]. In this section, we introduce timed
ER structures which extend ER systems with bounded timing constraints and add conflict
from event structures to model nondeterministic behavior (namely, environmental choice).

Timed ER structures are composed of a set of atomic actions (A), a set of events (E), a
set of rules (R), and a symmetric conflict relation (#). In timed circuits, the set of atomic
actions A is the set of all possible signal transitions. The occurrence of an action is an
event, and it is denoted (a,¢) where a is the action and ¢ is an occurrence index for the
action. The first instance of this action has 7 = 0, and ¢ increments with each subsequent
instance. We partition the event set £ into a set of input events (/) and a set of output
events (O).

The rule set R is used to represent a causal dependence between two events. Each rule
of the form (e, f, [, u) is composed of an enabling event e, an enabled event f, and a bounded
timing constraint (I, u). Informally, a rule states that the enabled event cannot occur until
the enabling event has occurred. Ignoring conflict for the moment, if two rules enable the
same event then that event cannot occur until both enabling events have occurred. This
causality requirement is termed conjunctive. The bounded timing constraint places a lower
and upper bound on the timing of a rule. A rule is said to be satisfied if the amount of time
which has passed since the enabling event has exceeded the lower bound of the rule. A rule
is said to be expired if the amount of time which has passed since the enabling event has
exceeded the upper bound of the rule. Again ignoring conflict, an event cannot occur until
all rules enabling it are satisfied. An event must always occur before every rule enabling
it has expired. Since an event may be enabled by multiple rules, it is possible that the
difference in time between the enabled event and some enabling events exceed the upper
bound of their timing constraints, but not for all enabling events. These timing constraints

are the same as the max constraints described in [46] and the type 2 arcs described in [73].
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The conflict relation is added to model disjunctive behavior and choice. When two
events e and €’ are in conflict (denoted efte’), this specifies that either e can occur or ¢’ can
occur, but not both. Taking the conflict relation into account, if two rules have the same
enabled event and conflicting enabling events, then only one of the two mutually exclusive
enabling events needs to occur to cause the enabled event. This models a form of disjunctive
causality. Inherently disjunctive behavior, or true OR causality, cannot currently modeled,
but we are investigating extending work by Lee in [40] to address this. Choice is modeled
when two rules have the same enabling event and conflicting enabled events. In this case,
only one of the enabled events can occur.

The formal definition of our timed ER structure is given below in which £ = TU O and

N ={1,2,3,.. }:
Definition 2.2.1 (Timed ER Structure) A timed ER structure is S = (A, 1,0, R, #) where
1. A is the set of atomic actions;
2. I CAXN isthe set of input events;
3. O C A XN is the set of output events;
4. RCEXEXN X (NU{o}) is the set of rules;
5. # C F X F is the conflict relation.

FEvents are labeled using the function L : £ — A.

2.3 Timed Configurations

For a timed ER structure, we define the allowed behaviors specified by the structure using
timed configurations. Winskel defined the allowed behaviors of event structures as subsets
of events, or configurations [77]. In order to add timing, we introduce timed configurations
in which each event is now paired with the time of its occurrence.

The first requirement for a subset of events to be a configuration is that it must be
conflict-free. In other words, if two events are in conflict, it is not allowed for both of them
to occur in a configuration. Winskel defined Con to be the set of finite conflict-free subsets

of I, i.e. Con C 2F, defined as follows:

Con = {X|(XCE)A(Ve,e € X . =(e#e))}.
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In order to add timing, we define TCon to be the set of conflict-free subsets of events in which
each event is paired with the real-valued time that the event occurred (i.e., TCon C 2E*%),
To obtain the Con set from TCon, we define the function untime : TCon — Con in the
obvious way.

The second requirement is that all events in the subset must be time-secured. Informally,
this means that for each event in the set, all the events needed to enable the event are also
in the set. To define this formally, we must first define when an event is enabled. The

untimed enabling relation (FC Con x ) is defined as follows:
Xtf & [(le,filibuye R)= (e X)V(Ie € X . (et ) A (€, f,1',u)) € R))].

Intuitively, this says given that the events in the set X have occurred that the event f
is untimed-enabled. This is true when a set of non-conflicting enabling events in rules in
which f is the enabled event are in the set X. To incorporate timing, we now define the

timed enabling relation (F,C TCon x R X E) as follows:
Zh f & [(untime(Z) & f)n (Ve t') € Z . (e, flLu)e R=1t>1t+1)].

Intuitively, this says that given that the set of event-time pairs in Z have occurred and
time has advanced to time ¢, the event f is timed-enabled. This is true when f is untimed-
enabled, and at time ¢ the lower bounds of all timing constraints have been satisfied. With

this relation, we can now define time-secured C TCon x F as follows:

time-secured(Z,e) < [Ieg,t0),. .., (€nstn) €EZ . €, =€ A

VZ S n . {(eo,to), .. .,(ei_l,ti_l)} l_ti 62'].

The third requirement for a subset of events to be a configuration is that it is non-
expired. This means that all events must occur before they are expired. An event is expired
when for all the rules enabling it, the time since the enabling event has exceeded the upper

bound of the timing constraint. We define a relation expired C TCon x F x } as follows:
expired(Z, f,t) & [(ZF: INNVE)Ye Z (¢, f,l,u)e R=>1>1 +u).

Using this relation, we say a timed configuration Z is non-expired if for all events either
the event has occurred and was not expired when it occurred, or it has not occurred and is

not expired at the latest time of any event occurrence in the configuration. We define the
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relation non-expired C TCon x F as follows:
non-expired(Z, f) < [(3t.(f,t) € Z AN —expired(Z, f, 1))V —expired( Z, f, (m:)aLXZ{t})].
e,t)E
Now, we can define all the timed configurations specified by a timed ER structure.

Definition 2.3.1 (Timed configurations) For a timed ER structure S = (A, 1,0, R,#), a

timed configuration of S is a subset of event-time pairs 7 C F x R which is:

1. conflict-free: Z € TCon,
2. time-secured: Ve € untime(Z) . time-secured(Z,e), and

3. non-expired: Vf € E . non-expired( Z, f).

The set of all configurations is C(.5).

2.4 Interpreting the Specification Language

In order to interpret the behavior of a module described in the timed HSE specification
language, we translate it to a timed ER structure. The procedure that we use is similar to
the one proposed by Subrahmanyam [66]. The first step uses the declarations to initialize
some functions to return the attributes declared for each signal. Next, each process is
iteratively decomposed until it is made up of only events and simple waits that are composed
on the operators specifying sequencing, concurrency, and choice. A simple wait is one which
is composed of an expression that includes only a single event. In order to translate the
decomposed specification to a timed ER structure, we need a function to compose two timed
ER structures on each of the operations, and a function to rename a timed ER structure to
resolve event name clashes before composition.

This section first describes a method to interpret non-repetitive processes which is then
extended to interpret repetitive processes. The interpretation procedures given in this section
are quite detailed for completeness, and they may be skimmed or skipped on first reading

without loss of continuity.

2.4.1 Declarations

The declarations are used to assign attributes to actions. These attributes are accessible

through functions of the form f: A — atir. For each declaration of the form:

type s = {initial, (L, w3 15 ug) s,
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we make the following assignments to initialize the functions type, init, and delay:

type(s 1) = type(s |) = type
init(s 1) = init(s |) = initial
delay(s 1) = (I, u,)
delay(s |) = (lf,uy).

2.4.2 Composition of Timed Event-Rule Structures

Each process is made up of a set of events and waits that are composed on operators
specifying sequencing (;), concurrency (||), and choice (|). Therefore, we need to define a
means of composing two timed ER structures. To facilitate this composition, two subsets
of the event set are added temporarily to the timed ER structure: first and last. Intuitively,
the first set indicates which events are the first to occur in a timed ER structure, and the
last set indicates which events are the last to occur. The composition of two timed ER
structures So = (Ao, lo, Oo, Ro, #o, firsty, lasty) and 51 = (A1, [1,01, Ry, #1, firsty, lasty)
(i.e., So op 51 where op € {;,||,|}) is defined as follows:

A = AgU4

I = Ihul; —(0gU 0y)

O = 0gU0O4

R = RoURyU{{e, f,delay(L(f))) | e € lasto A f € firsty Nop=;}

# = #0U#1U{(6,6/) | (6600/\6’601/\0})2 | )}
first = if (firsty=0Vop=|Vop=|)then firstyU first; else first,

last = if (firsty =0V lasty =0V op =V op =|) then lasty U last; else lasty

The sets of actions and output events are simply merged. The set of input events are
also merged, but any events which are also output events are removed to keep the sets of
input and output events disjoint. If there are no input events (i.e., I = (), we say the
structure is closed. In order to perform synthesis, we require the structure obtained from
the complete specification to be closed. The rule sets are similarly combined, but in the
case in which op = ; new rules are added from the last events in S¢ (i.e., the events in
the set lasty) to the first events in 57 (i.e., the events in the set first;). The conflict sets

are also merged, and if op = | then every output event in Sy is set to conflict with every
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output event in 5. Finally, new first and last sets are created. If the structures are being
composed in parallel or in conflict, the sets are created by simply taking the union of the
sets from each structure. If the structures are being composed in sequence, then in most
cases the first set equals first,, and the last set equals last;. The exception is if first, is
empty then the first set equals first;, and if either first; or last; is empty than the last set

is the union of the two last sets from the two structures.

2.4.3 Renaming of Timed Event-Rule Structures

When composing structures sequentially or in conflict, multiple occurrences of events with
the same name are not allowed. Therefore, before doing the composition, we first resolve
any name clashes using the function rename which takes two structures and returns the
second structure with event names changed such that they do not clash with event names

in the first structure. The function rename(Sg, 51) is defined as follows:

A = A
I = {rename(Fy,e)|ec I}
O = {rename(FEp,e) | e € Oy}
R = {(rename(FEy,e), rename(FEy, f),l,u) | (e, f,l,u) € Ry}
# = {(rename(Ey,e), rename( Eg,€')) | efte’}
first = {rename(FEy,e€) | e € first,}
last = {rename(Fy,e) | e € last;}

The function rename is overloaded above to take a set of events F and a single event (a,1),

and it renames (a, ¢) if there is a name clash with an event in the set £ as follows:

rename( L, (a,1)) = if (Vk(a,k) € IV) then (a,7) else (a,i+ j)
where (a,j—1)€ EA(a,j) ¢ E.

2.4.4 Interpretation of a Non-Repetitive Process

A non-repetitive process is one which does not contain any looping constructs (i.e., guarded
commands of the form ¢ — C;* or the infinite loop construct *[C]). These constructs
are addressed in the next subsection. To interpret a non-repetitive process, we define the

function TERS which takes a timed HSE specification and returns a timed ER structure
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of the form: S = (A, 1,0, R,#, first, last). This function iteratively decomposes the timed
HSE specification into events and simple waits that are composed on the operators, and it

is defined as follows:

TERS(p;q) = TERS(p); rename( TERS(p), TERSq))

TERS(pllq) = TERS(p)| TERSq)

TERS([p | q]) = TERS([p]) | rename( TERS([p]), TERA[q]))
TERS([p — q]) = TERS([p]); rename TERS([p]), TERSq))
TERS([pV q]) = TERS([p]) | rename( TERS([p]), TERA[q]))
TERS([pAql) = TERS([p)|| TER(q])

TERS([a]) = ({a},{(¢,1)},0,0,0,0,{(a,1)})

TERS(a) = ({a},0,{(a,1)},0,0,{(a, 1)}, {(a,1)})
TERS([skip]) = (0,0,0,0,0,0,0)

TERS(skip) = (0,0,0,0,0.0,0)

where p and ¢ are segments of a process, and « is an action.

The first rule simply states that the structure for two sets of commands p and ¢ composed
sequentially is obtained by finding the structure for p and ¢, renaming the events in the
structure for ¢, if necessary, and composing these structures using the sequencing operation
(;). When composing p and ¢ in parallel, a structure is again first found for each, but
they are composed using the parallel operation (||) and renaming is not done. In order
to generate the structure for a pair of guarded commands p and ¢, the structure for each
guarded command [p] and [g] is found individually, the events in the structure for [¢] are
renamed, if necessary, and the resulting structures are composed using the conflict operation
(). For an individual guarded command ([p — ¢]), a structure is obtained for a wait [p], and
it is composed sequentially with a renamed version of the structure for g. The next two rules
are for evaluating expressions in waits. The first says that a disjunct in a wait is defined to
be semantically equivalent to two waits in conflict. The second says a conjunct in a wait
is defined to be semantically equivalent to two waits in parallel. The last four translate
events and simple waits into timed ER structures. First, if the input to the function is a
simple wait on any event other than skip, the function returns a structure with a single
action, a single input event, and the last set initialized to include the input event. Next, if

the input to the function is an event other than skip, the function returns a structure with
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a single action, a single output event, and both the first and last sets initialized to include
the output event. Finally, if the input to the function is a simple wait on skip or the skip

event, the function returns an empty structure.

2.4.5 Interpretation of a Repetitive Process

If a process is repetitive, then the timed ER structure describing its behavior is infinite. Due
to its repetitive nature, however, this infinite behavior can be described with a finite model
by adding an additional set of rules R’ and an additional set of conflicts #’. A loop set is
also added temporarily to keep track of the last events before control loops back. When a
timed ER structure is created, these sets are all initialized to the empty set. The rename
function is modified in the obvious way to accommodate these new sets. To generate these

sets, the composition operator is modified as follows:

R = RHU Ry U{{e. f.delay(L(f)) | ¢ € loop, A [ € firsty hop=:}

# = FHoU#LU{(e.€) | (e € loop A€ € lasty N op = )}

loop = if (op= ||V op=]|) then loop, U loop, else (.

The R’ set is found by first taking the union of the corresponding sets from the structures
that are being composed, and then when op = ;, new rules are added from events in the
loop, set to the first; set which creates a loop in the structure. Also, if op = ; then the
events in lasty are set to conflict with the events in loop;. As for the loop set, the events
in the loop sets from the structures being composed in parallel or in conflict are simply
merged and initialized to the empty set when composed in sequence. Finally, there is one
more special case of composition in which Sp is being composed in sequence with ‘*’ (or

b

equivalently, in the case of the ‘4] |’ construct). In this case, the structure Sg is returned

with the loop set equal to lasty and the last set equal to the empty set.
With a timed ER structure of the form Sy = (Ao, Iy, Oo, Ro, #0, R, #4), we can induc-

tively define the infinite behavior specified by a repetitive process as follows:
Si = loop(So, So||rename(So, 5i-1))
where loop(Sp, S1) is defined as follows:

R = Ry U{(e,rename(FEy, f),l,u) | (e, f,{,u) € Ry}
# = #1U{(e,rename(Eg,€")) | e#ie’}.
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2.4.6 Vacuous Events

In the previous sections, we ignored the possibility that some events may be vacuous in the
first cycle, such as the first wait in the lazy-active protocol described earlier. We utilize
the additional sets described in the previous section to model vacuous events. In order to
detect that an event is vacuous, a bitvector » is used to represent the possibility of each
signal having a vacuous event on it. Before beginning the interpretation of each process,
all elements in v are initialized to true, and as each action appears non-vacuously, the
appropriate element is set to false. To determine if an action is vacuous, we define the

following function:

vacuous(v,a) = 1if v(a) and ((init(a) and a = s+) or (—init(a) and a = s—))

then true else false.
This information is used to modify the composition function as follows:

R = RoURyU{(e, f,delay(L(f))) | € € lasty A f € first; A op = ; A—vacuous(v,e)}
R = RLUR|U{{e, f delay(L([))) | e € loop, A f € first; Nop=;}
U{{e, f,delay(L(f))) | € € lasty \ f € first; A op = ; Avacuous(v, e)}

This puts all rules with vacuous enabling events into the R’ set, so they are enabling events

in the next cycle.

2.4.7 Interpretation of a Module

In order to obtain the timed ER structure for a complete module, it is now simply a matter

of composing all the individual processes in parallel, i.e.,
TERS(P Q)) = TERS(P)||TERSQ)

where P and () are processes.
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2.4.8 Example

The structure So = (Ag, lo, Oo, Ro, #0, Ry, #() that is obtained for the environmental se-

lection process sel from the SEL is shown below:

Ao = {sel, 1,sel, |, sell; T,sell; |,sel 1, sel2 |}

o = {(sel, 1.1), (seb 1,1), (sel, |,2)}

Oo = {(sell; 1,1),(sell; |,1),(sel2 T,1),(sel2 |, 1)}

Ro = {((sel, 1,1),(selt; 1,1),40,260),((sel, T,1), (sel2 T,1),40,260),
((sell; 1,1), (sell; |,1),2,40), ((sel2 1,1), (sel2 |,1),2,40),
((sel, |, 1), (selt; |,1),2,40), ((sel, |,2),(sel% |,1),2,40)}

#o0 = {((selt; 1,1), (sel2 T,1)), ((sell; 1,1), (sel2 |, 1)),
((sell; |,1), (sel2 T,1)), ((sell; |, 1), (sel2 |,1))}

Rl = R+ {((sell; |,1),(sell; T,1),40,260), ((self; |,1

((sel2 |,1), (sell; 1,1),40,260), ((sel2 |, 1

,(sel2 1,1),40,260),

) )
) ), (sel2 1,1),40,260)}
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Appendix

The formal syntax rules for our timed HSE language are given using BNF notation in
Figure 7. As with the abstract grammar, the left-hand and right-hand side of a syntax

’, and alternatives are separated with ¢|’. There are, however,

rule is separated using ‘::=
some additional constructs such as the bracket pair [ ...] which means optional, the brace
pair { ...} which means repeat zero or more times, and the selection construct *(...|...)
which is used to indicate a choice of options. Again, keywords are boldface and syntax
rules are enclosed in angle brackets ‘(...)". ID represents an identifier which is a string of
alpha-numeric characters starting with a letter. INT represents an integer or the keyword
inf or infinity. Finally, the symbols used in the language are enclosed in single quotes. In
Figure 8, the SEL is given as it would appear as input to the CAD tool ATACS.

There are two additional constructs that are added here which are used to facilitate the
specification of timing parameters. The first is delay macros which can be defined and then
used in signal declarations later. The second construct is a delay override which is specified
using a delay before an event to override the default delay given in the declaration for this
particular occurrence of the event.

Within ATACS, the command compile (filename) compiles a timed HSE specification
given in the file named (filename).hse into a timed ER structure which is stored into a file
named (filename).er. ATACS can also accept a timed ER structure as input directly which
is loaded with the command loader (filename). The format of the file is shown in Figure 9.
First, comments begin with the ‘#’ character which causes the program to ignore the rest
of the line. The header of the file gives the numbers of each type of entry that follows.
This includes the total number of events, the number which are input events, the number
of rules, and the number of conflicts. The next entry ‘.s’ is used to specify the initial state
which is given as a bitvector of 0’s and 1’s with a length equal to the number of signals in
the specification. The first event is always the reset event, the next set of events are those
on inputs, and the last set of events are the ones on outputs. Fach event other than reset is
composed of an action and an occurrence number separated by a ‘/’. Fach rule is composed
of an enabling event, enabled event, indication of which rule set it is in (‘17 if it is in R/,
‘07 if it is in R), a lower bound, and an upper bound of the timing constraint on the rule.
Finally, each conflict is a pair of events. The timed ER structure for the sel process from

the SEL is shown in Figure 10.
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(module)
(decls)
(decl)
(delaydecl)
(sigdecl)
(sigspec)
(delay)
(processes)
(process)
{cmds)
(cmd)
(event)
(parastruct)
(parallel)
(gdcmdstruct)
(gdcmdset)
(gdemd)
(expr)
(conjunct)
(literal)

module ID *;’{(decls) }{(processes)} endmodule
(decl){(decl)}

(delaydecl) | (sigdecl)

delay ID ¢ = '(delay);’

(input | output) ID [= {(sigspec)‘}];’

(true | false) | (delay) | (true | false)‘, (delay)

C < INT, INT [ % INT, INT ] > | ID
(process){(process)}

process ID *;’{(cmds)} endprocess

(emd) {5 (emd)}

[(delay)]{event) | (parastruct) | (gdcmdstruct)
ID+ |ID — | skip
‘(’(parallel)*)’
(cmds) {1 {cmds))}
gdemdset) ] |+ “[(emds)] | [expr)]
st (gt

expr)‘— > "(cmds)[; 7 * ']

literal){‘& (literal) }

{
{
{conjunct){‘|’(conjunct)}
{
(event) | “(*(expr)y

Figure 7: Complete BNF description for the timed HSE specification language.
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module SEL;

delay gatedelay =< 0,20 >;

delay seldelay =< 40,260; 2,40 >;
etc.

input selli = {false, seldelay };
input sel2i = {false, seldelay };
output selo = {false, gatedelay};
etc.

process selctrl;

« [ [ xferi + — > (([datai—]; datao+) || ([selli — | sel2i—];selo+)); [datai+];

[ selli+ & outli— — > outlo+;selo—;[outli4]; (xfero + || datao—);outlo—;
[xferi—]; xfero —
| sel2i + & out2i — — > out20 + selo—;[out2i+]; (xfero 4+ || datao—);out20—;

[xferi—]; xfero—
111
endprocess
process sel;
k[ [selo+]; [ skip — > selli+; [selo—]; selli —
| skip — > sel2i+; [selo—]; sel2i—
]

endprocess
etc.
endmodule

Figure 8: Part of the timed HSE specification for the SEL.

. INT # Number of events

A INT # Number of input events

a INT # Number of rules

.c INT # Number of conflicts

s (initial state)

reset

# List of input events

{ID + | =) /INT)

# List of output events

{ID( 4 7 = )/ INT}

# List of rules

IDC 4| =) INT ID( + 7] = )¢ VINT INT INT INT
# List of conflicts

ID(CC 4| =) INT ID(* + | = )¢ /)INT

Figure 9: Format for a timed ER structure.
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e9

i4

110

.c4

.5 000

reset

# List of input events
selli+/1 selli-/1

sel2i+/1 sel2i-/1

# List of output events
selo4/1 selo-/1

selo+/2 selo-/2

# List of rules in R
selo+/1 selli4+/1 0 40 260
selo+/1 sel2i4/1 0 40 260
selli+/1 selli-/1 0 2 40
sel2i+/1 sel2i-/1 0 2 40
selo-/1 selli-/1 0 2 40
selo-/2 sel2i-/1 0 2 40

# List of rules in R’
selli-/1 selli+/1 1 40 260
selli-/1 sel2i+/1 1 40 260
sel2i-/1 selli+/1 1 40 260
sel2i-/1 sel2i+/1 1 40 260
# List of conflicts
selli+/1 sel2i4/1
selli+/1 sel2i-/1

selli-/1 sel2i+/1

selli-/1 sel2i-/1

Figure 10: Timed ER structure for the sel process from the SEL.
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Chapter 3
Timing Analysis

In a home it is the site that matters; =il

in quality of mind it is depth that matters; =¥/
in an ally it is benevolence that matters; it =
in speech it is good faith that matters; EE=IE

. . 3535
in government it is order that matters; = {0
in affairs it is ability that matters; E 1

in action it is timeliness that matters. B 2% IR

—Lao Zi — BT

The basic idea behind synthesis and verification methods that use explicit state space ex-
ploration is that, if the reachable state space is finite or has a finite representation, only a
finite subset of the possible behaviors needs to be considered to compute the complete set
of reachable states. In our timed specifications, the occurrence times associated with events
can take on real values, so there are an infinite number of timed states in the system. In
order to perform explicit state space exploration, it is necessary to use a timing analysis
algorithm to construct a finite representation of this infinite state space.

In this chapter, we describe two timing analysis algorithms that we developed and ap-
plied to timed state space exploration. The first technique is an efficient, heuristic algorithm
which determines the minimum and maximum time difference between any two events in a
conflict-free timed ER structure and uses this information to guide state space exploration.
Since only conflict-free timed ER structures can be analyzed, this approach is limited to
deterministic specifications. Therefore, we also introduce another technique, partial order

timing, which makes use of geometric region representations of the timed state space and
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partial order information to guide their creation. Using this procedure, any timed ER struc-
ture can be analyzed, but in order to do so, it must first be transformed into an orbital

net representation that satisfies certain properties. This transformation procedure is also

described.

3.1 Constraint graphs

As described in the previous chapter, an infinite timed ER structure can be specified using
a finite representation of the form Sy = (Ao, Io, Oo, Ro, #o, Ry, #4). If this structure is
conflict-free (i.e., the conflict sets #¢ and #{, are empty), it can be fully described with
a cyclic constraint graph which is a weighted marked graph in which the vertices are the
events, the arcs are the rules, and the weights are the bounded timing constraints. If a rule
is in Ry, it is initially marked which means that a token is placed on the arc corresponding
to the rule to indicate that the rule is initially untimed enabled. Each rule of the form
(e, f,l,u) is represented in the graph with an arc connecting the enabling event e to the
enabled event f. The arc is weighted with the bounded timing constraint (/,u). In other
words, each rule corresponds to a graph segment, e <l’—u>> f (e <—l$11>> f,if the rule is in R{). A
cyclic constraint graph is essentially a signal transition graph (STG) [17] in which timing
constraints have been added to the arcs.

As an example, a SCSI protocol controller, originally specified with a STG [18], is
specified by its timed HSE specification in Figure 11. The timed ER structure for this
specification is shown as a cyclic constraint graph in Figure 12. Note that as an optimization
a simple analysis of the graph determines that some rules can be removed without changing
the specified behavior. In particular, the following redundant rules from Rg are not depicted

in Figure 12:
(g0 1,90 1,20,50)
{ack |, ackT1,20,50),
and the following redundant rules from Rj, are also not depicted:
{go 1,901,20,50)
(ack 1, ack |,20,50)

In general, a rule (e, f,l,u) in Ry can be removed if there exists an alternative path from e

to f which traverses only arcs from rules in Rg, the total minimum delay along this path is
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greater than or equal to [, and the total maximum delay along this path is greater than or
equal to u. If the rule is from R{, then the alternative path must include one and only one

arc from a rule in R{, and all other arcs from Ry.

module scsi;

input ack = { true,(20,50) };
input go = { false,(20,50) };
output req = { true,(0,5) };
output rdy = { false,(0,5) };
output ¢ = { true,(0,5) };
process scsictrl;

«[ req L;rdy 1; ¢ |;[go 17; rdy |5 [ack |]; req 15 [go |]; ¢ 15 [ack 1] ]
endprocess

process ackenv;

«[ [req |]; ack |;[req 11; ack T ]
endprocess

process goenv;

«[ [rdy 115 go 15 [rdy |]; go | |
endprocess

endmodule

Figure 11: Timed HSE specification for a SCSI protocol controller.

120,507 120,507 10,51
y

(acki) (gor) (ql )

[0,5] [0,5] [0,5] [0,5]
\J

[20,50]

[0,5]

y

(ackt )

Figure 12: Cyclic constraint graph for a SCSI protocol controller.
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A requirement for the timing analysis algorithm described in the next section is that
the cyclic constraint graph is well-formed. A cyclic constraint graph is well-formed if it is
strongly connected, every cycle has at least one arc which is initially marked, and for every
event there exists a cycle including the event in which there is just one initially marked arc.
Many specifications are not well-formed, but such specifications can often be analyzed by
transforming them into ones which are well-formed.

An infinite conflict-free timed ER structure is represented with an infinite acyclic con-
straint graph. FEach event e in the cyclic constraint graph can be mapped onto an infinite
number of events in the acyclic constraint graph of the form (e, ) where 7 is used to denote
each separate cycle from the unfolding of the cyclic constraint graph. The first cycle has
¢t = 0, and ¢ increments with each following occurrence. In the infinite acyclic constraint
graph, each rule (e, f, 1, u) corresponds to an infinite number of graph segments of the form:
(e,1) ) (f,t) (if the rule is in Ry, then it is of the form (e,i — 1) ) (f,1)).

A special reset event is added to the set of events in order to model the reset of the
circuit. For each initially marked rule (i.e., each rule in R{) with enabled event f, a reset
rule is added between the reset event and the event f. This rule models special timing
constraints on the initial occurrence of the event f. The default timing constraint has a
lower bound equal to the minimum of all initially marked rules with enabled event f and
the upper bound is the maximum. Effectively, the acyclic constraint graph is constructed
by cutting the cyclic constraint graph at the initial marking and unfolding the graph an
infinite number of cycles. Part of the unfolded infinite acyclic constraint graph for the SCSI

protocol controller is shown in Figure 13.

e 09 Gach .00

Figure 13: Part of the acyclic constraint graph for the SCSI protocol controller.
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3.2 Estimating the Worst-Case Time Difference

In order to synthesize timed circuits, timing analysis must be used to deduce the timing
information necessary to compute the reachable state space. For any particular state en-
countered while exploring the state space described by a cyclic constraint graph, there may
be many possible next states depending on what is the next event that occurs. Timing anal-
ysis can be used to reduce the number of possible next states by showing that certain events
which appear concurrent in the specification are actually ordered. The timing information
which is required for this check is the minimum and maximum difference in time between
any two events in the cyclic constraint graph. Polynomial-time algorithms have been de-
veloped [46] [73] to determine the difference in time between any two events in an acyclic
graph. Circuit specifications, however, are normally cyclic. Therefore, to apply these algo-
rithms to circuit synthesis, these results must be extended to handle cyclic specifications.
Exponential-time algorithms have been proposed that find time differences in cyclic graphs
[3, 35]. In this section, we propose a polynomial-time heuristic algorithm which is sufficient
for the analysis of conflict-free timed ER structures. Our algorithm unfolds the cyclic graph
into an infinite acyclic graph and then examines only two finite acyclic subgraphs of the

infinite graph to determine a sufficient bound on the time difference between two events.

3.2.1 Worst-Case Time Difference

A time difference is a bound in the amount of time between two events in the cyclic con-
straint graph for a particular cycle. The worst-case time difference is a bound on the

minimum and maximum difference in time between two events for any cycle.

Definition 3.2.1 (Time Difference) Given two events and the cycles of their occurrence
(u,i— j) and (v,i) where j > 0 is their cycle offset, the time difference between these two

events is the strongest bound [L;, U;] such that:
L; < t(<?}, Z>) - t(<u7 i — ]>) <U;

Definition 3.2.2 (Worst-Case Time Difference) Given two events u and v from a cyclic
constraint graph and the cycle offset between them j where j > 0, the worst-case lime

difference between these two events in any cycle is [L, U] defined to be:
L =min{L;} and U = max{U;},
1>] 1]

where [L;, U;] is the time difference between w and v with offset j in each cycle i.
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3.2.2 Algorithm to Estimate the Worst-Case Time Difference

A pair of events from a cyclic constraint graph can appear in an infinite number of cycles
in the corresponding acyclic constraint graph; however, it is possible to analyze a finite

number of cycles to find a sufficient estimate of the worst-case time difference.

Definition 3.2.3 (Estimate of the Worst-Case Time Difference) Given the worst-case time
difference [L, U] between two events from a cyclic constraint graph, an estimate of the worst-

case time difference is any [L',U’] such that L' < L and U' > U.

Given two events u and v from a cyclic constraint graph and a cycle offset between them
J, Algorithm 3.2.1 determines an estimate of the worst-case time difference between them
by constructing two finite acyclic subgraphs to be analyzed by Algorithm 3.2.2. The first
subgraph includes only events from cycles ¢ — 1 and ¢ for some arbitrary value of ¢ > 0.
A source event is added to this subgraph, and for each rule in Rj, an additional arc is
added from the source event to the enabled event with a timing constraint of [0, oco]. This
construction guarantees that no timing assumptions are made about previous cycles which
are not modeled in our finite graph. For the special case when ¢ = 0, another subgraph is
constructed which includes only events from cycle 0. We prove later that the analysis of
these two subgraphs yields an estimate of the worst-case time difference.

These two subgraphs are acyclic and finite so the algorithms described in [46] and [73]
can be used to find the time difference between any two events (u,i — j) and (v,7) in these
graphs. The function MaxzDiff (defined recursively in Algorithm 3.2.3 [73]) is used to find
the upper bound of the time difference U;. MazDiff is also used to find the minimum time
difference L; since MinDiff((u,i— j),(v,1)) = (=1)* MazDiff({(v, 1), (u,i— 7)) [46] [73]. The
estimate of the worst-case time difference returned by Algorithm 3.2.1 is the minimum of
the lower bounds and the maximum of the upper bounds of the time differences for the i*”
and 0% cycle. Since the worst-case time difference is only defined over values of i where
i > j, the 0% occurrence only needs to be considered if j = 0. As an optimization, when
this algorithm is called repeatedly the graphs are created only once for a given circuit, and
once a time difference is calculated for a particular pair of events, it is stored in a table.

For the example shown in Figure 12, the estimate of the worst-case time difference found
by Algorithm 3.2.1 between the two events rdy | and ¢ | with cycle offset 7 = 0 is the bound
[15,55]. This means that rdy | always occurs at least 15 units of time after ¢ |, but no

more than 55 units of time after ¢ |.
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Algorithm 3.2.1 (Estimate the worst-case time difference in a cyclic graph)
bound WC TimeDiff(timed ER structure (Ao, Fo, Ro, R}); events u,v; cycle offset j) {
if (j > 1) then return([—oc, 00]);
else {
construct subgraph G from (Ao, Fo, Ro, R})) using only events with cycle indices
t— 1 and ¢ for an arbitrary ¢ > 0 and exclude rules with reset enabling event;
add source event to graph G;
foreach rule of the form (e, f,l,u) in R}, add an arc from source to (f,i—1)
weighted with (0,00);
[Li, U] = TimeDif{ G, (u,i— j),(v,i));
if (j == 1) then return([L;, U;]);
else {
construct subgraph G from (A, Eg, Ro, R}) using only events with cycle index 0;
[Lo, Ug] = TimeDiff(G’, (u,0),(v,0));
L' = min(L;, Lo);
U' = max(U;, Up);
return([L', U']);
I

Figure 14: Algorithm to find an estimate of the worst-case time difference in a cyclic graph.

Algorithm 3.2.2 (Find a time difference in an acyclic graph)
bound TimeDiff(acyclic graph G; events (u,i— j), (v,1)) {

L; = (—1)* MazDiff(G, (v, i), (u,i— j));

U; = MazDiff (G, (u,i— j),(v,1));

return([L;, U;]);
}

Figure 15: Algorithm to find a time difference in an acyclic graph.
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Algorithm 3.2.3 (Find a maximum time difference in an acyclic graph)
int MazDiff(acyclic graph G; events {(u,i— j), (v,i)){
mazxdiff = max {MazDiff (G, (u,i— j),(e,i—¢)) + u};
(e,i—s><—l7u—>>(v,i>€G
if there is a path from (v,i) to (u,?— j) then

mazdiff = min{ min {MazDiff(G,(e,i — j — €),(v,1)) + I}, maxdiff};

(rimj—e) % wi-fyec

return (maxdiff);

}

Figure 16: Algorithm to find a maximum time difference in an acyclic graph.

3.2.3 Proof of Correctness

Theorem 3.2.1 shows that the bound for the i** cycle, [L;, U;], found in Algorithm 3.2.1 is
an estimate for all ¢ > 0. Therefore, combining this with the actual time difference for i = 0

results in an estimate of the worst-case time difference.

Theorem 3.2.1 Algorithm 3.2.1 determines an estimate of the worst-case time difference

between two events in a cyclic constraint graph for any cycle.

Proof: In order to show that Algorithm 3.2.1 returns an estimate of the worst-case
time difference, we must show that the following inequalities hold: I/ < L and U" > U
(from Definition 3.2.3). If j > 1 then Algorithm 3.2.1 returns [L',U’] = [—o0, o] which
trivially satisfies Definition 3.2.3. If j = 1 then it returns [L',U’] = [L;,U;]. If j = 0 then
Algorithm 3.2.1 returns L' = min( Lo, L;) and U’ = max(Uy, U;). Since [Lg, Up] is an actual
time difference for the 0" cycle, we only need to show that [L;, U;] always yields an estimate
for ¢+ > 0. A maximum time difference is calculated recursively in terms of other maximum
time differences (see Algorithm 3.2.3). Therefore, when calculating U; using subgraph G,
one of two cases may occur. Its value may be independent of maxdiff values for events not in
graph G (i.e., events from cycles less than ¢ — 1). If this is the case, then U; = min;>{U;}.
On the other hand, if it depends on time differences of earlier events not in graph G, then just
before MazDiff falls off the end of the graph, it calls either MazDiff{ G, source, (f,i—1)) (1)
or MazDiff(G,(f,i— 1), source) (2). Since the rule between (f,¢— 1) and source has timing
constraint [0, 00], (1) will return oo, and (2) will return 0. If graph G were extended to

include another cycle, the rule between source and (f,7 — 1) would be replaced with a rule
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of the form (e, f,,u). Now, MazDiff(G,(e,i — 2),(f,i— 1)) would be called which would
return a value less than or equal to oo, or MazDiff(G, (f,i — 1), (e, i — 2)) would be called
which would return a value less than or equal to 0 (note this second case is never positive
because from the ordering defined by the rule, we know that e always occurs before f).
This relationship continues to hold if the graph is extended an infinite number of cycles.
Since the value found for case (1) and for case (2) is greater than that found if graph G
is extended back further, and since the maximum time difference is calculated by adding
these values to values found on the rest of the graph, we know that the value calculated for
U; using graph G will be less than or equal to the actual value of U; for ¢ > 1. Therefore,
U’ > U, and we can similarly show that L' < L. Thus, Algorithm 3.2.1 gives an estimate

of the worst-case time difference. n

3.2.4 Complexity of the Algorithm

Calculating the time difference of each pair of events using the MaxDiff algorithm has
complexity O(v - e) where v is the number of vertices and e is the number of arcs in the
graph [46]. Let |E’| and |R'| be the number of events and rules, respectively, in the cyclic
constraint graph representation. The largest graph which Algorithm 3.2.1 analyzes has
2| F’| vertices and 2|R’| arcs. Therefore, using Algorithm 3.2.1 to calculate estimates for all

time differences has complexity O(|E’| - |R|).

3.2.5 Extensions to Find a Better Estimate

If either the bound is not tight enough or there is interest in finding worst-case time differ-
ences of events across more than one cycle (i.e., j > 1), the algorithm can be extended by
increasing the size of the subgraphs which Algorithm 3.2.1 analyzes. Assuming subgraph &
is enlarged to contain ¢ cycles (¢ = 2 in Algorithm 3.2.1), the algorithm is modified in the

following ways:

1. Construct subgraph G using only events from cycles i — (¢ —1),...,7 where ¢ > (¢—2).
2. Construct subgraph G’ using only events from cycles ¢ < (¢ — 2).
3. If j < (¢~ 2) then using graph &', find [L;, Uj], ..., [L(c—2) Uteay]-

4. L' =min(L;, L, ..., Lc—g)) and U’ = max(U;, Uj, . .., Ue_g))-
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In the modified algorithm, estimates of worst-case time differences with j < (¢ —1) can
now be found. Theorem 3.2.1 can easily be extended to show that the modified algorithm
returns an estimate of the worst-case time difference. It is also easy to show that the

complexity of the modified algorithm is O(c|E’| - ¢|R']).

3.2.6 Termination of the Algorithm

In order to avoid unnecessary calculations, the algorithm can be modified to check if ex-
tending the size of the subgraphs analyzed (i.e., increasing ¢) is helpful. To do this, the
algorithm is modified to return a best-case estimate, [ Lpest, Upest], in addition to the worst-
case estimate, [L', U], where Lycy; = min(Ly, ..., Lc—g)) and Upesr = max(Uj, ..., U_z)).
Given the actual worst-case time difference is [L, U], it is easily shown that these estimates
satisfy the inequalities: I/ < I < Lpest and Upey < U < U’ If tightening the bound to
[Lpests Upest] would not result in less circuitry than [L’, U'], then it is not worth increasing
c. In fact, if Lpesy = L' and Upesy = U', then the actual worst-case time difference [L, U] has
been found. In general, increasing ¢ does not guarantee that the exact bound [L,U] can
always be found, but in all the circuit examples that we synthesized using Algorithm 3.2.1
(i.e., ¢ = 2), it either found the exact bound or at least a sufficiently tight bound to detect

all redundancies.

3.2.7 Removing Redundant Rules

One application of this timing analysis algorithm is to determine if a rule in a conflict-free
timed ER structure is redundant. A rule is redundant in a timed ER structure if its omission
does not change the behavior specified. In other words, given a structure S and a rule r,
a new structure S’ constructed by removing r from its rule set has the same set of timed
configurations (i.e., C(5') = C(9)).

If there are multiple rules enabling an event, then it is possible that some of them are
redundant. In addition to the redundant rules described in Section 3.1, timing analysis
can be used to find additional redundant rules. Algorithm 3.2.4 checks each rule by using
Algorithm 3.2.1 to find an estimate of the worst-case time difference between the enabled
and enabling event. If the lower bound of this estimate is larger than the upper bound of
the timing constraint on the rule, then this rule cannot be constraining the behavior so it

is redundant.
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Algorithm 3.2.4 (Find redundant rules)
structure FindRed(timed ER structure (Ao, Eo, Ro, R)) {
foreach rule of the form (e, f,l,u) in Ry {
(L', U= WC TimeDiff( {Ao, Eo, Ro, RL). ¢, f,0);
If (I' > u) then Ry = Ry — {{e, f,1,u)};

}
foreach rule of the form (e, f,l,u) in R} {

[L’, U’]:WCTz'meDzﬂ( <A0, Foy, Ry, R6>, e, f, 1);
I (1> u) then Ry = Ry — {{e. f.1,u)};

¥
return ((Ag, Fo, Ro, R));

}

Figure 17: Algorithm to find redundant rules.

The SCSI protocol controller depicted in Figure 12 has four events that are enabled by
multiple rules: req |, rdy |, req |, and ¢ |. For the rule, (¢ |,rdy |,0,5), Algorithm 3.2.1
estimates the worst-case time difference between the two events rdy | and ¢ | to be the
bound [15,55]. Since the lower bound of this time difference, 15, is greater than the upper
bound of the timing constraint on the rule, 5, the rule is found to be redundant. In other
words, the rule between the events ¢ | and rdy | can be removed without changing the

specified behavior. Further analysis finds this to be the only redundant rule.

3.3 Orbital Nets

Algorithm 3.2.1 is limited to analyzing conflict-free timed ER structures, and therefore,
it can only be used on deterministic specifications. In order to address non-deterministic
timed ER structures, we use partial order timing, an efficient, general algorithm which
operates on an orbital net representation to find the reachable state space. In this section,
we describe the orbital net representation, and how to translate a timed ER structure into
an orbital net which satisfies the necessary properties to be analyzed using partial order
timing analysis.

An orbital net is essentially a labeled safe Petri net extended with automatic net con-
structions and syntactic shorthands. The net constructions allow us to have relatively

straightforward operational semantics, while the syntactic shorthands allow us to compose



CHAPTER 3. TIMING ANALYSIS 43

the nets without an exponential blowup in net size. These features are described in detail
in [60]. Orbital nets also include constructs for specifying timing requirements and simulta-
neous actions which allow us to easily mix behavior and environmental requirements even
at the gate model level. These last two features are described in detail in the following
subsections.

An orbital net is modeled by the tuple (A, P,T, F, My, TR, L) where A is the set of
atomic actions, P is the set of places, T" is the set of transitions, F' C (P xT)U (T x P) is
the set of edges, My C P is the initial marking, TR is an assignment of timing requirements
to places, and L is a function which labels transitions with sets of simultaneous actions.
For a place p € P, the preset of p (denoted ep) is the set of transitions connected to p (i.e.,
op ={t €T | (t,p) € F}), and the postset of p (denoted pe) is the set of transitions to
which p is connected (i.e., pe = {t € T'| (p,t) € F'}). For a transition ¢t € T', the presets and
postsets are similarly defined (i.e., ot = {p € P | (p,t) € F'} and te = {p € P | (t,p) € F}).

3.3.1 Timing Requirements

Timing in an orbital net is associated with a place as a timing requirement consisting of
a lower bound, an upper bound, and a type (denoted (/,u)type). The lower bound is a
nonnegative integer and the upper bound is an integer greater than or equal to the lower
bound, or co. Again, since real values can be expressed as rationals within any required
accuracy, restricting the bounds of timing requirements to be integers does not decrease the
expressiveness of orbital nets.

There are two types of timing requirements: behavior (b) and constraint (c¢). Behavior
timing requirements are used to specify guaranteed timing behavior. Constraint timing
requirements, on the other hand, are used to specify desired timing behavior, and they do
not affect the actual timing behavior. If the timing requirement on a place is omitted, it is
assumed to be (0, 00)c.

Consider a D-type flip-flop (FF) pictured in Figure 18(a). The timing requirements
for the FI' are depicted using a timing diagram in Figure 18(b) and using an orbital net in
Figure 18(c). This FF has a setup time of 5 time units which is represented with a constraint
timing requirement from the rising transition on the input D to the rising transition on the
clock . Similarly, a hold time of 5 time units is represented with a constraint timing
requirement from the rising transition on the clock ¢ to the falling transition on the input

D. Note that these are requirements that the environment must satisfy, and the FF cannot
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guarantee this behavior. The delay of the FF is represented as a behavior timing requirement
from the rising transition of the clock ¢ to the rising transition on the output ¢). This

requirement says that the FF circuit will generate ) | between 5 and 8 time units after

e .

FF

@) (b) ©

Figure 18: (a)A D-type flip-flop; (b) its timing requirements represented using a timing
diagram; (c) its timing requirements represented using an orbital net.

When there is a single behavior place p in the preset of a transition, regardless of the
interpretation, the time of occurrence of a transition in the postset of p (denoted t(pe))
is always greater than the time of occurrence of any transition in the preset of the place
(denoted t(ep)) by at least the lower bound of the timing requirement on p, and it is
always less then the upper bound. If, on the other hand, there are multiple behavior places
in the preset of a transition, there are four different ways the specified behavior can be
interpreted [72]. The first, or type 1, says that for all behavior places p, t(pe) — t(ep)
must exceed the lower bound but must not exceed the upper bound (this is the type used
by our constraint places). If no possible timing behavior satisfy these requirements, the
specification is inconsistent. The second, or type 2, says that for all behavior places p,
t(pe) — t(ep) must exceed the lower bound and for at least one behavior place, t(pe)—t(ep)
must not exceed the upper bound. This is the type usually associated with circuit behavior,
so it is the type we associate with our behavior places. Types 3 and 4 are duals in which
only a single lower bound needs to be reached (i.e., an OR relationship). These two types
are not considered as they do not correspond with the conjunctive nature of the Petri-net
model.

The partial order timing analysis algorithm described later relies on the fact that each
behavior place represents a single nondeterministic choice of delay that cannot be affected
by other behavior places. When there are multiple behavior places in the preset of a

transition, the type 2 semantics allow the delay between the transition in the preset and
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postset of a behavior place to exceed the requirements upper bound if the transition in
the postset is being constrained by another behavior place. Therefore, the partial order
timing analysis algorithm requires specifications to include at most a single behavior place
in the preset of each transition. Fortunately, the original orbital net specification can
always be transformed, as described later, into one which satisfies this single behavior place

requirement.

3.3.2 Simultaneous Actions

For a large class of speed-independent and delay-insensitive designs, any hazard is poten-
tially fatal [5], so simple delay models that are easy to integrate into gate models suffice.
With the more complex delay models required for modeling real-time circuit delay, such
integration is no longer easy or straightforward. Labeling each transition in an orbital net
with a (possibly empty) set of simultaneous actions remedies this difficulty by allowing the
function of a gate to be modeled separate from its delay behavior without a significant
blowup in the state space size.

Consider, for example, an AND gate with a delay of 2 to 4 time units. Under the output
delay model, the gate is modeled with an instantaneous function block followed by a delay
element as shown in Figure 19(a). The orbital net corresponding to the functional behavior
of the AND gate is given in Figure 19(b). In this net, there are four places corresponding
to the four states of the two input signals @ and b, and the value of ¢ in each place tracks
exactly the AND of the signals @ and b. The orbital net corresponding to a simple delay
element is shown in Figure 19(c). The behavior place labeled (2,4) indicates that an output
will occur between 2 and 4 time units after the preceding input occurs; no behavior violating
this requirement will be generated by the net. The constraint places do not constrain the
behavior of the net, but if another input event occurs before the preceding output event
then the environment violates the specification. Composition of these nets gives an AND
gate operating under the output delay model. In a similar manner, an AND gate operating
under the input delay model could also be obtained.

The delay model shown in Figure 19(c) is relatively simple, and it suffices for many
types of circuits. More complex delay models can and have been constructed, modeling
more accurately the behavior of a gate under hazard conditions; for these, the separation

of gate models into combinational function and delay behavior is essential [60].
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@ (b) (©)

Figure 19: (a) AND gate with inputs ¢ and b, and output d; (b) orbital net for its functional
behavior; (¢) delay buffer with input ¢, output d, and delay of (2,4).

3.3.3 Operational Semantics

The behavior specified by an orbital net that satisfies the single behavior place requirement
is defined with an operational semantics composed of two types of operations: advancement
of time and firing of transitions. In an orbital net, an untimed state is a marking of the
net. A timed state is an untimed state with a time-valued clock clk; associated with each
marked place p;. Fach clock advances with time and denotes how long the place has been
marked. Time is advanced by uniformly increasing these clocks by an amount 7 which is
less than or equal to maz-advance for a given marking. The function maz-advance is defined
as the minimum difference over all marked behavior places between the upper bound of the
timing requirement on the place and its clock, or oo if there are no marked behavior places.
This upper limit on time advancement maintains the clocks for all behavior places below
the maximum allowed by their range.

In an orbital net, a transition is untimed-enabled if all places in its preset are marked.
A transition is timed-enabled when it is untimed-enabled and if there is a behavior place
in its preset, this place’s clock is greater than the lower bound of the timing requirement
on the place. Any timed-enabled transition can be fired instantaneously, and any number
of transitions can be fired without time advancing. A transition is fired by removing the
marking in the places in its preset and discarding the clocks. The places in the postset
of the fired transition are then marked, and all newly marked places are assigned a clock
initialized to zero.

Before firing a transition, however, the constraint places in the entire net must be
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checked, and if any constraint place p; is marked with clk; > wu;, this firing is marked as
a failure. Also, the clocks corresponding to a marking that is removed from a constraint
place p; must be checked, and if clk; < [;, this firing is also marked as a failure. Finally,
after the firing of a transition, every marked behavior place must have a transition in its
postset that is untimed-enabled in the new state; if this condition is not satisfied, this firing
is a failure. This requirement ensures that every marked behavior place can fire in all states
in which its timing conditions are met, and thus the value of its clock when it fires cannot
be controlled by external state. If a failure is detected during synthesis, the specification is
inconsistent and must be modified before an implementation can be obtained. If a failure
is detected during verification, the timed circuit violates its specification.

These semantics define the set of timed firing sequences P, as a sequence of pairs of tran-
sition firings and time values. For simplicity, the time value represents a non-negative dura-
tion since the previous pair. Executing a timed firing sequence a on an orbital net results in
the timed state fire(a). The set P is defined recursively. The empty sequence ¢ is in P. For
every firing sequence a in P and for every value of 7 such that 7 < maz-advance(fire(a)),
then a(¢,7) is in P, where ¢ represents an ‘empty’ firing. In addition, if a transition ¢ is
timed-enabled in fire(a), then a(¢,0) is also in P. The reachable state space is the range of

the function fire over P.

3.3.4 Transformation from a Timed ER Structure to an Orbital Net

Winskel gave a construction from event structures to Petri nets [77]. We describe a similar
construction from timed ER structures to orbital nets. Given a finite representation of a
timed ER structure Sy = (Ao, Fo, Ro, #0, Ry, #0), Algorithm 3.3.1 constructs an orbital net
N=(A,P,T,F,My, TR, L).

The algorithm first initializes the elements of the orbital net representation. The action
set A for the orbital net is identical to the action set Ay for the timed ER structure.
Similarly, the transitions T in the net correspond to the events Fg in the structure, and the
labeling function L for the transitions in the net is the same as the labeling function Lg for
the events in the structure. The place set P, flow relation F', and initial marking My are
all initialized to the empty set. Finally, the next place label is set to 0.

Next, the algorithm translates each rule in the structure to connections in the orbital
net. For each rule, a connection is added from the transition which corresponds to the

enabling event to a place, and another connection is added from the place to the transition
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which corresponds to the enabled event. The algorithm must first determine if a new place
is going to be added to the net for these connections or if a place which already exists in
the net should be used. A place is shared between multiple rules if either the enabling
event conflicts with some other event which enables the same enabled event or the enabled
event conflicts with some other event which is enabled by the same enabling event. The
first four if-clauses check for either of these two conditions in the two rule sets Ry and Ry,
Note the two rule sets are checked separately because it affects whether the place is in the
initial marking or not. If there is no conflicting event or a place has not yet been added for
the conflicting event, the last if-clause adds a new place to the orbital net with a timing
requirement set by the timing constraint from the rule.

The function place : Ex ¥ — PU{none} used in Algorithm 3.3.1 to find a place between

two transitions is defined as follows:
place(e, f) = if Ip{(e,p),(p, f)} C F then p else none

If we apply these algorithms to the structures obtained for the sel process from the SEL,
we obtain the orbital net shown in Figure 21(a). Part of the orbital net after composition

with the other processes from the SEL is shown in Figure 21(b).

3.3.5 Satisfying the Single Behavior Place Requirement

Before the partial order timing analysis algorithm can be used, the orbital net must be
transformed to one which satisfies the single behavior place requirement. To accomplish this,
consider a fragment of an orbital net that has two behavior places in the preset of a transition
shown in Figure 22(a). The desired timing behavior can be depicted graphically as shown in
Figure 22(b). This net can be transformed to the one shown in Figure 23(a) which satisfies
the single behavior place requirement. Basically, the idea behind this net transformation
is that a path through the net is created for each possible ordering of the transitions in
the preset. This has the effect that each transition in the preset is given the chance to
be the last one preventing the transitions in the postset from occurring. For illustration
purposes, additional events ¢y and ¢; are added to the net to occur simultaneously with the
two transitions associated with ¢. The timing behavior of ¢g and ¢; are shown graphically
in Figure 23(b) and (c), respectively. The behavior of these two together is exactly the
desired timing behavior of ¢. For n behavior places, the net is transformed to model the

n! possible orderings of the n enabling events. While this transformation can lead to a
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Algorithm 3.3.1 (Transform a timed ER Structure to an Orbital Net)
net struct2net(timed ER structure (Ag, Fo, Ro, #0, Ry, #0)) {
A = Ag;
T = Fo;
P=F=M,=70
nextp = 0;
foreach (e, f,l,u) € Ry U R{) {
P = none;
initial = ({e, f,1,u) € Ry);
if dg.e#g A (g, f,l,u) € Ry then {
initial = false;
} p = place(y, f);
if p = none A dg.e#g A (g, f,1,u) € R}, then p = place(g, f);
if p = none A 3Jg.f#g N {(e,g,l,u) € Ry then {
initial = false;
p = place(e, g);
}
if p = none A 3Jg.f#g A {e,g,l,u) € R, then p = place(e, g);
if p = none then {
p = nextptt;
P =Puip}
if initial then My = My U {p};
TR(p) = (I, u)b;

return ((4, P,T, F, My, TR, L));

}

Figure 20: Algorithm to transform a timed ER structure to an orbital net.
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Figure 21: (a) Orbital net for the sel process from the SEL; (b) part of the orbital net after
composition with the other processes.

substantial blowup in the net size, we have found that the value of n tends to be quite small
in practical examples.

The transformation is more complicated in the case that one of the behavior places in
the preset has multiple transitions in its postset. Consider a fragment of the orbital net from
the SEL shown in Figure 24(a). In this net, the behavior place in the postset of data; |
is shared by the transitions outi, T and out2, |. In other words, if out2, T occurs, the
marking is removed before it can contribute to the firing of outi, . In order to model this,
the net is first transformed using the procedure described above for outi, | and out2, 1.
Then, transitions are added to the part associated with out!, T on out2, | that reset the
marking, and similarly transitions are added to the part associated with out2, T on outi, .

A portion of the transformed net illustrating this is shown in Figure 24(b).

3.4 Partial Order Timing

In orbital nets, the clocks associated with each marking can take on real values, so there

are an infinite number of timed states. In order to perform explicit state space exploration,
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Figure 22: (a) Fragment of the orbital net that violates the single behavior place require-
ment; (b) graphical representation of the desired timing behavior.
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Figure 23: (a) Orbital net that satisfies the single behavior place requirement; graphical
representation of the timing behavior of ¢ (b) and ¢ (¢).
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Figure 24: (a) Fragment of an orbital net with a behavior place that has multiple transitions
in its postset; (b) part of the transformed orbital net that satisfies the single behavior place
requirement.
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we must either group the timed states into a finite number of equivalence classes or sets, or
restrict the set of values that the clocks can attain.

Alur’s unit-cube technique has the best known worst-case complexity for timed state
space exploration of general timed systems [1]. This technique considers equivalence classes
of timed states with the same integral clock values and a particular linear ordering of the
fractional values of the clocks. For the case where there are two marked places and two
clocks clky and clky, the equivalence classes are pictured in Figure 25(a); every point, line
segment, and interior triangle is an equivalence class. Let us assume the number of distinct
untimed states in an orbital net is |9|. If the maximum value of any timing requirement
is k, and there are at most n marked places in the net in any state (this value is trivially

bounded by the size of the safe net), the worst-case size of the state space for his method

n! k\"
KAV
|5 In2 (1112)

is asymptotically [60],

d l<2 clky clig
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@ (b) ©

Figure 25: (a) Unit-cube, (b) discrete, and (c) geometric representations of the timed state
space.

It has been proven, however, that the general unit-cube technique is unnecessary for
orbital nets since considering only integer event times gives a full characterization of the
continuous-time behavior [60] (this proof is similar to one given by Henzinger, et. al. in
[32] for timed transition systems). In other words, only timed states associated with each
discrete-time instance, represented as a point for the two-dimensional case in Figure 25(b),
needs to be considered. This technique is used by Burch for verifying timed circuits [14],
and as a worst-case state space size of |.9| (k+1)" which is better than the unit-cube method
by more than n!.

Both unit-cubes and discrete-time, however, are of little more than theoretical interest
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because the size of the state space increases exponentially with the concurrency in the net.
For a circuit with timing values accurate to two significant digits, with up to six independent
concurrent pending events, the state space is easily in excess of 10'? states—well beyond
the capabilities of most finite-state synthesis and verification techniques.

In this section, we first discuss geometric timing, a timing analysis technique that usually
performs well in practice, even though the worst-case performance is much worse than either
the unit-cube or the discrete-time approaches. Dill [23], Lewis [41], and Berthomieu and
Diaz [8] originated geometric state space exploration, and it has become an active area
of research [2, 31, 29]. Then, we describe our proposed technique, partial order timing,
which improves upon the geometric methods by making use of concurrency and causality
information. Recent work by Yoneda et. al. [79] also considered partial orders. Our
work differs in that our formalism includes notions of specification, circuit composition,
and receptiveness which enable us to perform efficient state space exploration on nontrivial
timed circuit examples. To our knowledge, neither timed automata nor time Petri nets have

been used in this fashion.

3.4.1 Geometric Regions

Rather than consider at each step a single discrete-time state, or a minimum equivalence
class of timed states, the geometric timing method considers an infinite set of timed states
in parallel. Specifically, convex geometric regions of timed states represented by upper and
lower bounds on specific clock values and on the differences between pairs of specific clock
values are used as the representation of the timed state space. The set of such constraints
is usually represented by a matrix A, where the constraints on clocks {clky, ..., clk,} are of
the form clk; — clk; < aj;. A fictitious clock clky that is always exactly zero is introduced so
that upper and lower limits on a particular clock can be represented in the same form [23].

For any convex region that can be represented by such a matrix, there are many matrices
that represent the same convex region. The process of canonicalization using Floyd’s algo-
rithm can be performed to yield a unique constraint matrix [23]. While in general Floyd’s
algorithm runs in time O(n?), since only incremental changes are made to the matrix dur-
ing analysis, specializations of Floyd’s algorithm that run in time O(n?) suffice [60]. Two

sample regions are given in Figure 25(c).
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3.4.2 State Space Exploration with Geometric Timing

Each geometric region can be considered as an infinite set of timed states which are operated
on in parallel. In order to perform state space exploration using geometric timing, we
redefine the operational semantics of orbital nets in terms of these geometric regions as
opposed to individual timed states. We do not discuss the aspects of state space exploration
that do not consider time, since they are the same in both cases. We describe how these
operations work for a single step in a timed sequence, assuming it works for the predecessor
sequence; the trivial base case and structural induction on sequences completes the proof
that these operations work for all sequences.

In our original operational semantics, advancing time involves adding some number ¢ to
all clocks. For geometric regions, advancing time involves extruding the geometric region
in the clky = clky = - - - = clk, direction, subject to maz-advance, which itself is a convex
region.

Determining whether a particular transition is timed-enabled in our original operational
semantics entails comparing the clocks with the timing requirements. With geometric re-
gions, we determine the subset of the timed states in the region for which the particular
transition is enabled. This can be performed by introducing the enabling conditions on
the transition as additional constraints on the region and recanonicalizing. For orbital
nets, these conditions describe a convex region in the appropriate form, and it is easy to
show that the intersection of two such convex regions is a convex region of the same form.
Canonicalization by definition does not reduce the set of timed states represented.

After selecting an enabled transition, firing that transition involves removing some set
of clocks and introducing new clocks initialized to zero. With geometric regions, removing
these clocks involves projection of the system of constraints to eliminate a particular set of

variables, and introducing new clocks is done by adding a new set of variables equal to zero.

3.4.3 Performance of Geometric Timing

While unit-cubes and discrete-time operate on timed firing sequences, geometric timing
operates over untimed firing sequences. The function untime(a) returns the underlying
untimed firing sequence from a given timed firing sequence by stripping the timing and
removing any ¢ firings. For each untimed firing sequence a operated on by geometric

timing, it calculates directly the full set of timed states reachable from all timed firing
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sequences [ that satisfy untime(3) = a. Thus, rather than separately considering every
possible occurrence time for a particular transition in a during state space exploration, in
one step the geometric region method considers all possible occurrence times.

State space exploration using geometric timing can be very efficient. However, some
examples require an extremely large number of geometric regions such as the adverse ex-
ample adv4x40 shown in Figure 26. While only having a single untimed state, standard
geometric timing techniques generate an incredible 219,977,777 distinct geometric regions.

This is more than either the number of discrete-time states or unit-cube equivalence classes.

a, 4ab a, 4ab a, 4ab a, 4ab
a b c d

Figure 26: The adverse example adv4x40 with n = 4 and & = 40.

3.4.4 Concurrency, Causality, and Posets

The major source of blowup in the adverse example is the way the standard geometric timing
algorithm calculates exactly the set of timed states reachable from a sequence of transition
firings; the transition firings are linearly ordered, even if they are concurrent in the system
being evaluated. That is, if two concurrent transitions start clocks, the constraints between
the two clocks reflect the linear order that the transitions are fired in the original sequence.
For example, when the geometric timing algorithm analyzes the untimed firing sequence
[a,b], it obtains the upper geometric region shown in Figure 27, and when the algorithm
considers the sequence [b, a], it obtains the lower geometric region. In general, if there are
n concurrent transitions that reset clocks visible in the resulting timed state, there are n!
different sequences that need to be considered, each of which leads to a distinct geometric
region. For this reason, it is important to distinguish the causal ordering of transitions from
the non-causal ordering that comes about from the selection of a particular firing sequence.

To solve this problem, we construct a partially ordered set, or poset for each untimed
firing sequence which is represented with an acyclic, choice-free unfolding of the original
orbital net. The poset reflects the causality and concurrency inherent in the firing sequence.
Initially, the unfolded net representing the poset contains a single transition with places in

its postset corresponding to each initially marked place. Transitions are added in the same
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Figure 27: Geometric regions from the adverse example.

order as they occur in the firing sequence. For each transition in the firing sequence, a corre-
spondingly labeled transition is added to the unfolded net. A set of arcs into the transition
are connected from the most recently added places in the unfolded net corresponding to
places in the preset of the transition in the original orbital net. Finally, a new set of places
corresponding to the places in the postset of the transition in the original net are added, and
these places are connected to the new transition. Every place and every transition in the
unfolded net, except the first, correspond to some place and some transition in the original
net. Every place and every transition in the original net correspond to zero or more places
and transitions in the unfolded net.

A poset explicitly represents the concurrency in a particular firing sequence. That is,
a particular poset corresponds to many different firing sequences that differ only in the
interleavings of concurrent transitions; every such firing sequence fires the same set of
transitions and leads to the same final untimed state. For example, the poset represented
with the unfolded net shown in Figure 28 corresponds both to the sequence [a, b] and to the

sequence [b, a].

01, 40b 01, 40b

a b
éﬂ,mﬂb éﬂ%%

Figure 28: One poset from the adverse example.

1, 4ab QEL, 40b
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3.4.5 State Space Exploration with Partial Order Timing

State space exploration proceeds just as it does for the previous methods based on sequences,
except that, for each sequence, the algorithm constructs the corresponding unfolded net.
With depth-first search, this is done incrementally. The algorithm also incrementally cal-
culates a constraint matrix that stores the firing time relationship among the transitions.
For each constraint place p, the constraint ¢(ep) < #(pe) is introduced. For each behavior
place p in the resulting unfolded net with a timing requirement of (I, u)b, two constraints
are introduced. The first reflects the minimum separation, t(ep) — ¢(pe) < —I. The second
reflects the maximum separation, t(pe) — t(ep) < u. All constraints introduced in this fash-
ion for a given unfolded net must be satisfied. After canonicalizing this constraint matrix, it
has produced a geometric region that represents the full set of reachable states for the poset
corresponding to the unfolded net. Applying this procedure to the unfolded net shown in
Figure 28, we obtain at once the geometric region which encloses both regions shown in
Figure 27.

While geometric timing operates on untimed firing sequences, partial order timing op-
erates on posets. The function poset takes an untimed firing sequence and returns the
corresponding unfolded net. For each untimed firing sequence a operated on by the partial
order technique, it calculates directly the full set of timed states reachable from any timed
firing sequence § such that poset(untime(3)) = poset(a). Thus, rather than separately con-
sidering every interleaving of concurrent transitions, in one step the partial order method
considers all possible interleavings. For untimed state space exploration, different inter-
leavings result in the same state. For timed state space exploration, different interleavings
usually result in different sets of timed states, with different future behavior, leading to a
combinatorial explosion of timed regions for each untimed state. Representing, as a single
constraint matrix, the union of all timed states reachable from all possible interleavings,
therefore, dramatically reduces the size of the state space representation. In fact, the partial
order method typically reduces the average number of timed regions for each untimed state
to a value close to one. For the adverse example in Figure 26, partial order timing obtains

exactly one geometric region corresponding to the one untimed state.
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3.4.6 Efficiency Considerations

The number of transitions in the unfolded net is equal to the length of the firing sequence
plus one, and it increases with the depth of our search. Calculating the minimum separa-
tions between the occurrence times in the unfolded net, even with our incremental O(n?)
approach, becomes prohibitively expensive as the firing sequence lengthens. In addition, the
algorithm needs a constraint matrix for each step; this would require a tremendous amount
of storage during depth-first search.

To keep n bounded as the depth of our search increases, the algorithm determines what
prefix, if any, of the unfolded net can safely be ignored. The algorithm can eliminate any
transitions that no longer affect future calculations. In general, the algorithm can eliminate
a variable from any set of equations or inequalities whenever it has produced the full set
of equations or inequalities that use that variable. Since all constraints introduced through
the firing of a transition are associated with places connecting the new transition to the old,
once a transition in the unfolded net no longer has any places in its postset which do not
have a transition in their postset, it is eliminated from our constraint matrix. Thus, our n
is—at most—the number of marked places in the original net at any given time, plus one
for the current transition.

Because the number of geometric regions is typically small, a further optimization is
possible. Rather than backtracking only when an identical geometric region is found, our
search can backtrack whenever a new geometric region is a subset of a previously seen

geometric region. Comparing two geometric regions for inclusion can be performed in
O(n?) time.

3.5 Finding the Reduced State Graph

In order to generate a circuit implementation, many methodologies transform a higher-
level specification into a state graph (SG) so that Boolean minimization techniques can be
applied [17] [47]. Essentially, a state graph is a graph in which the vertices are bitvectors
and the arcs are signal transitions. Each bitvector specifies the binary value of every signal
in the system when the system is in that state. When synthesizing a timed circuit, one
of the timing analysis algorithms described in this chapter is utilized to generate a reduced
state graph (RSG) which often has significantly fewer states than a SG generated without

considering timing constraints. Since the size of the SG and the complexity of the circuitry
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are strongly correlated, our method often results in simpler circuitry compared with other
methods that do not fully utilize timing constraints.

A RSG is a graph in which its vertices are untimed states and its edges are possible state
transitions. A RSG is modeled by the tuple (I,0,®, I") where [ is the set of input signals,
O is the set of output signals, @ is the set of states, and I' C @ x @ is the set of edges. For
each untimed state s, there is a corresponding labeling function s : TUO — {0, R, 1, F'}

which returns the value of each signal and whether it is untimed-enabled, i.e.,

0 if u is stable low in s
R if v is untimed-enabled to rise in s
s(u) =

1 if u is stable high in s

Fif v is untimed-enabled to fall in s.

It is useful to also define a function val which strips the excitation information, i.e.,

0 fu=0o0ru=R

vallu) =
() 1 fu=1oru=~F.

Traditional definitions of state labeling functions have not included the enabling of
signals as it can usually be inferred from the set of state transitions. In timed circuits,
however, it is possible that a signal is untimed-enabled but not timed-enabled in a given
state. In this case, there would be no state transition out of that state in which that signal
fired, and thus, it would not be possible to infer from the state graph that the signal is
untimed-enabled.

A state graph is defined to be well-formed if for any state transition (s, s’) in I, the value
of exactly one enabled signal in s changes to a new value in s’. A state transition (s,s’) and
the signal v that differs in value is denoted as follows: s = s’. Our synthesis procedure also
requires that the state graph be complete state coded, defined to be that if for any two states
in which all signals have the same value, any output signal untimed-enabled in one state
is also untimed-enabled in the other. It has been reported that adding state variables can
transform an arbitrary state graph into one that satisfies complete state coding [19, 39, 74].
These approaches, however, may be conservative when timing is considered. Therefore,
we believe adding state variables to a timed specification is an interesting open research
problem.

If the timed ER structure for the timed HSE specification is conflict-free, Algorithm 3.2.1

can be used to derive the reduced state graph using a constrained token flow described in
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Algorithm 3.5.1. This is similar to token flow which is used for finding state graphs as
described in [47] [17]. The algorithm begins with the initial marking of the constraint graph
which is defined as the set of rules enabled by reset. The function FindState is then used to
find the state as defined above for the marking. Given a marking, an event f is enabled if
all rules of the form (e, f, 1, u) in both Ry and R{, are in the marking, or all rules of this form
in Rg and the rule (reset, f,{,u) is in the marking. If in a marking more than one event
is enabled, all possible event sequences need to be generated. With timing constraints, it
may be possible that one of the enabled events is always preceded by another. The function
Slow, implemented in Algorithm 3.5.2, is used to check if an enabled event is slower than
some other enabled event. If so, the occurrence of the slower event is postponed. The result
is that some states are no longer reachable, yielding a reduced state graph. Note that if
the function Slow is changed to always return FALSE then the resulting state graph is the

same as generated using regular token flow.

Algorithm 3.5.1 (Find the reduced state graph)
set FindRSG (timed ER structure (Ao, Eo, Ro, R})) {
initial_marking = {rules in Ro of the form (reset, f,1,u)};
set_of-markings = {initial_marking};
present_state = FindState({Ag, Fo, Ro, R{), initial_marking);
set_of_states = {present_state};
while (set_of-markings # 0) {
take marking from set_of-markings
(i.e., set_of-markings = set_of-markings — {marking} );
foreach enabled event f in marking {
if not (Slow({Ao, Lo, Ro, R(), [, marking)) then {
new_marking = marking — {rules in marking of the form (e, f,l,u)}
+ {rules in Ry U Ry, of the form (f,g,l,u)};
present_state = FindState({ Ao, Fo, Ro, R{), new_marking);
if (present_state ¢ set_of_states) then {
set_of_states = set_of_states + {present_state};
set_of-markings = set_of-markings + {new_marking};

Frio

return (set_of_states);

}

Figure 29: Algorithm to find the reduced state graph.
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Algorithm 3.5.2 (Check if an event is slow)
boolean Slow(timed ER structure (Ao, Eo, Ro, Ry); event w; marking M ) {
foreach event v that is enabled in M where w # v {
J=FindCycleOffset(v,u);
if (j > 0) then {
(L', U= WCTimeDiff( { Ao, Eo, Ro, RL),u, v, 7 );
if (U’ < 0) then return(TRUE);
} else {
(L', U =WCTimeDiff( (Ao, Fo, Ro, R}),v,u,(—1)%*j);
if (L’ > 0) then return(TRUE);
}
}
return(FALSE);

}

Figure 30: Algorithm to check if an event is slow.

61
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Using this algorithm on the SCSI protocol controller with the function Slow replaced
with FALSFE (i.e., ignoring the timing constraints), the SG obtained contains 20 states as
shown in Figure 31(a). If the timing constraints are considered, a RSG is derived which

contains 16 states as shown in Figure 31(b).

State encoding
(ack,go,req,rdy,q)

State encoding
(ack,go,req,rdy,q)

Figure 31: (a) SG and (b) RSG for the SCSI protocol controller.

The SEL introduced in Chapter 2 has non-deterministic behavior, namely input choice,
so its timed IER structure is not conflict-free and the RSG cannot be found using Algo-
rithm 3.5.1. Instead, the timed ER structure for the SEL is converted to an orbital net
using Algorithm 3.3.1 which is further transformed to satisfy the single behavior place
requirement. The resulting net is then analyzed using the partial order timing analysis al-
gorithm to find the reduced state graph. The resulting RSG for the SEL contains 53 states.
A SG generated ignoring all the timing information contains 256 states. As shown in the

next chapter, the smaller RSG produces a significantly smaller circuit implementation.
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Appendix

The usage of these timing analysis algorithms within ATACS is described in this appendix.
After a timed HSE specification and has been compiled to a timed ER structure using the
command compile and /or loaded using the command loader, several checks are done to make
sure the timed ER structure is well-formed. The first is a liveness test which checks that
every cycle has at least one arc which is initially marked. The second is a connectivity test
which checks that the graph is strongly connected. If the graph is not strongly connected,
the command connect can be used to attempt to add rules to make it strongly connected.
The third check is a safety test which checks that every event exists in a cycle that includes
just one initially marked arc. If any check fails, an error report can be obtained while in
verbose mode to help track down the cause of the error.

After obtaining a well-formed timed ER structure, the program then attempts to elimi-
nate any redundant rules. If the program detects that the timed ER structure is conflict-free,
it uses Algorithm 3.2.4 to remove redundant rules. In either case, rules which have alterna-
tive paths that make them redundant as described in Section 3.1 are removed. In verbose
mode, a list of redundant rules is stored to the file named (filename).rr. An example of such
a file is shown in Figure 32 for the SCSI protocol controller.
< go+/1,g0-/1,0,[20,50] >
< go-/1,g0+/1,1,[20,50] >
< ack+/1,ack-/1,1,[20,50] >

< ack-/1,ack+/1,0,[20,50] >
< q'/lvrdy'/1707[075] >

Figure 32: Redundant rules from the SCSI protocol controller.

The program is now ready to find the RSG. If the program detects that the timed ER
structure is conflict-free, it uses Algorithm 3.5.1. Otherwise, the timed ER structure is
converted to an orbital net using Algorithm 3.3.1 which is further transformed to satisfy
the single behavior place requirement. The resulting net is then sent to the program 0RBITS
written by Tom Rokicki [60] to apply the partial order timing analysis algorithm to find
the RSG. The resulting RSG is then read back into ATACS for the rest of the synthesis
procedure as described in the next chapter. In verbose mode, the RSG is stored to the file
named (filename).rsg. An example of such a file is shown in Figure 33 for the SCSI protocol

controller’s reduced state graph depicted in Figure 31(b).
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SG:
STATEVECTOR:INP go INP ack q req rdy
STATES:
011F0
0F10R
RFFO1
RF001
1F00F
R0O001
1000F
FOORO
000R0O
FRO10
O0RR10
F1010
01R10
OR110
FF000
0F000

Figure 33: Reduced state graph for the SCSI protocol controller.

There are several commands which are related to timing analysis. First, the command
st sets the timing constraints on all rules to (0, c0) and turns off all timing analysis, so as to
produce speed-independent designs. The command cycles (number) can be used to change
the number of cycles that the graph is unrolled when finding the worst-case time differences.
The command findtd finds all time differences for the current number of cycles and stores
them to the file named (filename).td. Similarly, the command findwctd finds all estimates
of the worst-case time difference and stores them to the file named (filename).wctd. The
commands shower and printer display and print the cyclic constraint graph or orbital net
for the current design. Similarly, the commands showrsg and printrsg display and print
the reduced state graph for the current design. The command storeer can be used to store
the current timed ER structure to a file after modifications have been made to it such as
removing redundant rules. Finally, it is possible to load a reduced state graph directly for

synthesis in the form depicted in Figure 33 using the command loadrsg.
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Synthesis

... shifts up and down, everybody knows its wrong

—skinny puppy

Synthesis is the process of transforming a specification into a circuit implementation. Our
synthesis procedure begins with a RSG representation derived using the timing analysis
algorithms described in the previous chapter from which a hazard-free timed circuit imple-
mentation is generated using only basic gates such as AND gates, OR gates, and C-elements.
From a RSG there are several different approaches that could be used to obtain a gate-level
timed circuit implementation. The first approach is to use a traditional boolean minimiza-
tion technique directly. We demonstrate, however, that when mapping the resulting imple-
mentation to basic gates, it may result in a hazardous implementation. Another approach
is to split the design of the rising and falling transitions to obtain a generalized C-element
implementation [44] and decompose it to basic gates. This technique alleviates some of
the hazard problems, but we demonstrate that it may still be hazardous when mapped to
basic gates. We take a standard C-implementation approach in which each rising and falling
region for each output signal is implemented using a single cube, or AND gate, which must
satisfy certain correctness constraints. A covering problem is setup and solved to find an
optimal implementation for each region. When all the regions are merged, the resulting

timed circuit implementation is guaranteed to be a hazard-free at the gate-level.
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4.1 Sum-of-Products Implementation

After obtaining a RSG, we could apply a traditional Boolean minimization technique to
find an implementation. Using this technique, the state space is partitioned into an on-set,
an off-set, and a don’t-care-set. Then, a Boolean minimization program, such as espresso
[10] can be used to find the optimal sum-of-products representation. For our designs, a
minimization problem would be setup for each output signal v with the on-set containing
each state s in which the signal is enabled to rise or is stable high (i.e., s(u) = R or
s(u) = 1), the off-set containing each state s in which the signal is enabled to fall or is
stable low (i.e., s(u) = F or s(u) = 0), and the don’t-care-set containing all unreachable
states (i.e., 31V — @).

Applying this technique to the signal out2, from the SEL results in the Boolean equation:
out2, = (data; A\ sel2; N —out2;) V (data, N out2,) V (—zfer, A out?,)

In order to guarantee correctness, Chu [17] and Meng [47] assumed that the logic equation
for each output signal could be implemented directly with a single complex atomic gate. In
other words, each signal is built with an instantaneous function block with a delay element
connected to its output. Unfortunately, if the equation is mapped to basic gates and the
delays of these gates are considered individually, the implementation may be hazardous.
For example, the equation for out2, could be implemented directly as a sum-of-products as
shown in Figure 34. If the 3-input AND and OR gates (gates 1 and 4) are assumed to have
a delay of (2,5) while the 2-input AND gates (gates 2 and 3) have a delay of (2,3), this
implementation is hazard-free. However, if the upper bound of the delay on the 2-input
AND gates increases to 4 or more time units, this circuit is now hazardous. The segment
of the state graph to the left illustrates a sequence of transitions which cause a hazard.
Essentially, after gate 1 has caused out2, to rise, it has the potential of being shut off again
before gates 2 or 3 can come on to hold the state.

In order to solve this problem, Lavagno [38] first mapped the logic equations ignoring
hazards using standard synchronous techniques, then added delay elements where neces-
sary to remove any potential hazards. This technique, however, not only adds additional
overhead in terms of area and delay, but the resulting circuits may not be very reliable due

to the difficulty in designing delay elements with accurate timing.
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Figure 34: A hazardous sum-of-products implementation of out2, from the SEL.

4.2 Generalized C-Implementation

Another implementation strategy originally proposed by Martin [44] is to use generalized C-
elements as the basic building blocks. This is also the technique used in our earlier work [52].
In this technique, the implementation of the set and reset of a signal are decoupled. The
basic structure is depicted in Figure 35(a) in which the upper sum-of-products represents
the logic for the set, the lower sum-of-products represents the logic for the reset, and the
result is merged with a C-element. This can be implemented directly in CMOS as a single
compact gate with weak-feedback as shown in Figure 35(b) or as a fully-static gate as shown
in Figure 35(c).

Using a procedure similar to the one described in [52], we obtain a generalized C-element
implementation for the signal out2, shown in Figure 36. While this could be implemented
with a single generalized C-element, a gate-level implementation would be composed of a
3-input AND gate, a 2-input AND gate, and a C-element. Although this implementation no
longer has the hazard associated with the RSG fragment in Figure 34, it now has a hazard
illustrated with the state graph shown to the left in which the reset AND gate glitches
while the output is stable low. For the specified delays, it can be shown that the hazard
does not propagate to the output, but given appropriate delays this hazard may propagate
[5]. To address this problem, after a generalized C-element implementation is produced and

decomposed to basic gates, the design could be back-annotated with delays from the gate
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Figure 35: (a) The generalized C-element configuration with (b) weak-feedback and (c)
fully-static CMOS implementations.

library, and the circuit could be verified. While this may often work, it is not clear what to
do in the cases in which a hazard does exist. Also, a hazard is a spurious transition which
wastes power and does no useful work. In a power efficient implementation, it is desirable

to have logic which is hazard-free both internally and externally.
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Figure 36: A hazardous gate-level implementation of out2, from the SEL.
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4.3 Standard C-Implementation

To avoid the hazard concerns discussed above, our approach obtains a gate-level imple-
mentation by first decomposing the design into a set of rising and falling regions which
are each implemented using a single cube. While the general structure of the standard
C-implementation shown in Figure 37 is similar to the generalized C-element structure,
each cube in the set or reset block must satisfy certain constraints to guarantee that the
merged implementation is a gate-level hazard-free circuit. The approach is conservative in
that timing analysis may show that the decomposed generalized C-element implementation
is sufficient, but the overhead required tends to be small to get a safe implementation that

is free of internal hazards.

So0—|
So1— st

$10—
S11—

roo |
fo1—
reset
10— u
rg—

Figure 37: The standard C-implementation.

4.3.1 Excitation Regions and Quiescent States

In order to obtain a standard C-implementation, the RSG is decomposed for each output
signal into a collection of ezcitation regions. An excitation region for the output signal u
is a maximally connected set of states in which the signal is enabled to change to a given
value (i.e., s(u) = R or s(u) = F). If the signal is rising in the region (i.e., s(u) = R), it
is called a set region, and the k** set region for a signal u is denoted FR(u 1,k). Similarly,
if the signal is falling in the region (i.e., s(u) = F), it is called a reset region, and it is
denoted FR(u |,k). Typically, different excitation regions correspond to different output
signal transitions in a high-level specification. For example, there are two set regions for
the signal zfer, in the SEL which correspond to the two instances of zfer, T in the timed

HSE specification in Figure 5.
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For each signal u, there are two sets of stable, or quiescent states. There is the set of
states where the signal u is stable high denoted QS(u 1) (i.e., @S(u 1) = {s € & | s(u) = 1}),
and the set where it is stable low denoted QS(u |) (i.e., @S5(u |) = {s € & | s(u) = 0}).

4.3.2 Correct Covers

We assume each excitation region will be implemented with a single AND gate, or cube,
corresponding to a cover of the excitation region. The cover of a set region C(u |,k) (or
a reset region Clu |,k)) is a set of states for which the corresponding cube in the imple-
mentation evaluates to one. In order for a cover to lead to a hazard-free implementation,
it must satisfy certain correctness constraints [7, 54]. These constraints guarantee that any
gate in the implementation only changes when it is actively driving the output signal to
change. This ensures that the transition of the gate is acknowledged.

First, a correct cover needs to satisfy a covering constraint which says that the reachable
states in the cover must include the entire excitation region but must not include any states

outside the union of the excitation region and associated quiescent states, i.e.,

ER(ux, k) C [Clu*, k)N @] C [ER(ux, k) U Q(u*)]

where “*”

indicates either “7” for set regions or “|” for reset regions.
Second, the covers of each excitation region must also satisfy an entrance constraint to
ensure hazard-freedom. This constraint says that the cover must only be entered through

excitation region states, i.e.,
[(s,8) € I'Ns & Clux, k) A s" € Clux, k)] = s" € ER(u*, k)

To optimize the implementation, a single AND gate can be allowed to implement mul-
tiple regions. First, the procedure finds AND gate covers for each excitation region using
modified correctness constraints. The covering constraint is modified to allow the cover to

include states from other excitation regions, i.e.,

ER(ux, k) C [Clux, k)N @] C || ER(u*, 1)U Q(ux)
l

The entrance constraint is similarly modified to allow the cover to be entered from any

corresponding excitation region state, i.e.,

[(s,8') € T As @ Cluk, k)N s € Clux, k)] = 5" €| ER(ux,1)
l
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An additional constraint is also now necessary to guarantee that an AND gate either covers

all of an excitation region or none of it, i.e.,
ER(ux,l) € Clux, k) = ER(ux,l)N Clux, k) =0

Second, after the covers are found for each excitation region, a disjoint set of these covers
must be selected to cover all regions. It is possible that no such set exists. In this case, the
amount of gate sharing must be limited. A more general framework for the sharing of gates

across signal networks is described in [37].

4.4 Finding Enabled Cubes and Trigger Cubes

Since each region is implemented with a single cube, to obtain a hazard-free implementation,
all literals in the cube must correspond to signals that are stable, i.e., constant throughout
the excitation region. Otherwise, the single-cube cover would not cover all excitation region
states. When a single-cube cover exists, an excitation region EFR(u%,k) can be sufficiently
approximated using a cube called an enabled cube, denoted EC(ux, k), defined on each signal

v as follows:

0 ifVse ER(uk, k) [val(s(v))
EC(ux,k)(v)= ¢ 1 if Vs € ER(ux, k) [val(s(v))

X otherwise

0]
1

If a signal has a value of 0 or 1 in the enabled cube, the signal can be used in the cube
implementing the region. A cube, such as the enabled cube, implicitly represents a set of
states in the obvious way. The set of states represented by the enabled cube is always a
superset of the set of excitation region states (i.e., EC(ux, k) O FR(ux,k)).

Each cube in the implementation is composed of trigger signals and context signals. For
an excitation region, a trigger signal is a signal whose firing can cause the circuit to enter
the excitation region while any non-trigger signal which is stable in the excitation region can
potentially be a context signal. The set of trigger signals for an excitation region FR(ux,k)
can also be represented with a cube called a trigger cube TC(ux,v) defined as follows for

each signal v:

valls'(v)) 1 3s,s' [(s > ') A (s & ER(us, k) A (s € ER(us, k)]

X otherwise

TC(ux, k)(v) = {
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In order for our synthesis procedure to generate a circuit, the cover of each excitation
region must contain all its trigger signals (i.e., Clu*,k) C TC{u*,k)). Since only stable
signals can be included, a necessary condition for our algorithm to produce an implementa-
tion is that all trigger signals be stable (i.e., EC(ux,k) C TC(ux*,k)). If a trigger signal is
not stable then we must either constrain concurrency [47], add state variables [37], or use a
more general algorithm [7].

The enabled cubes and trigger cubes are easily found with a single pass through the
RSG. Table 1 shows the enabled cubes and trigger cubes corresponding to all the excitation
regions in the SEL.

Table 1: Enabled cubes and trigger cubes for the SEL.

‘ ux, k ‘ FEC(ux, k) ‘ TC(ux, k) ‘
zfer, 1,0 | 11X0100X010 | XXXX1XXXXXX
zfer, 1,1 | 110X010X001 | XXXXX1XXXXX
zfer, |,0 | 0X0O0XX10000 | OXXXXXXXXXX
data, 7,0 | 10000000X00 | 1XXXXXXXXXX
data, |,0 | 11X010X1010 | XXXX1XXXXXX
data, |,1 | 110X01X1001 | XXXXX1XXXXX
sel, 7,0 1000000X000 | 1XXXXXXXXXX
sel, |,0 11100001110 | XXXXXXXXX1X
sel, |, 1 11010001101 | XXXXXXXXXX1
outl, 7,0 | 11100001100 | X11XXXXXXXX
outl, |,0 | 1XX01010010 | XXXXXX10XXX
out2, 1,0 | 11010001100 | X1X1XXXXXXX
out?, |,0 | 1X0X0110001 | XXXXXX10XXX
(afery, data;, sell;, sel2;, outl;, out?;, xfer,, data,, sel,, outl,, out2,)

4.5 Finding an Optimal Correct Cover

Our procedure to find a correct cover begins with a cube consisting only of the trigger signals
(i.e., C(ux, k) = TC(ux, k)). If this cover contains no states that violate either the covering
or entrance constraint, we are done. This, however, is often not the case, and context signals
must be added to the cube to remove any violating states. For each violation detected, the
procedure determines the choices of context signals which would exclude the violating state.

Finding the smallest set of context signals to resolve all violations is a covering problem.
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Due to the implication in the entrance constraint, inclusion of certain context signals may
introduce additional violations which must be resolved. Therefore, the covering problem is
binate.

To solve our binate covering problem, we create a covering and closure (CC) table [28]
for each region. While other techniques exist to find binate covers such as those described
in [36, 11], the CC table is simple and facilitates presentation. There is a row in the CC
table for each context signal, and there is a column for each violation and each violation
that could potentially arise from a context signal choice. An entry in the table contains a
cross (X ) if the context signal resolves the conflict. An entry in the table contains a dot (o)
if the inclusion of the context signal would require the violation to be resolved.

To construct the table for a given excitation region FR(ux,k), the procedure first finds
all states in the initial cover (i.e., TC(u*, k)) which violate the covering constraint. In other
words, a state s in T'C(u*, k) is a violating state if the signal u has the same value but is
not enabled (i.e., s(u) = 0 for a set region or s(u) = 1 for a reset region), is enabled in
the opposite direction (i.e., s(u) = F for a set region or s(u) = R for a reset region), or
is enabled in the same direction but the state is not in the current excitation region (i.e.,
s(u) = R for a set region or s(u) = F for a reset region and s ¢ FC(ux,k)). If a violation
exists, the procedure adds a new column to the table with a cross in each row corresponding
to a context signal v that would exclude the violating state (i.e., EC(ux, k)(v) = —wval(s(v))).

The next step in the table construction is to find all state transitions which violate
the entrance constraint in the initial cover or may violate it for a particular context signal
choice. For any state transition s — s, this is possible when s is not in the excitation region
(i.e., s € FClux,k)), s’ is a quiescent state (i.e., ¢'(v) = 1 for a set region and ¢'(v) = 0
for a reset region), s’ is in the initial cover (i.e., s’ € TC(ux*,k)), and v excludes s (i.e.,
EC(ux, k)(v) = —wval(s(v))). For each entrance constraint violation or potential violation
detected, the procedure adds a new column to the table again with a cross in each row
corresponding to a context signal that would exclude the violating state. If the signal v
in the state transition is a context signal, the state s’ only needs to be excluded if v is
included in the cover. This implication is represented with a dot being placed in the row
corresponding to the signal v.

If a violation is detected for which there is no context signal to resolve it, the CC table
construction fails. In this case, as with non-stable trigger signals, it is necessary to constrain

concurrency, add state variables, or use a more general algorithm.
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In a single pass through the RSG, all the CC tables can be constructed. When im-

plementing (out2, |,0) from the SEL, no covering constraint violations are detected. This

is not surprising since our complex-gate implementation of this region only contained the

trigger signals zfer, and —data,. There are, however, entrance constraint violations which

are shown in the CC table in Table 2.

Table 2: CC table for (out2, |,0) from the SEL.

Signal [ 1 [2 3[4 ]5]6]7[8]9]10]11]12][13]14]15]
zfer; X X | X X

sell; X | o | X o | X | X | o o o | x o
outl; X | X |o]|o X | X | X | X | X 0 o X | X
out?; XX | X | X X | X | X | X ]| X X X X X X X
zfer,

data,

sel,

outl, o) X | o|x]|o X | X
out?, XX | X | X X | X | X | X ]| X X X X X X X

The last step is to find the smallest set of context signals to implement each excitation

region by solving the CC tables that are constructed. The CC tables are solved using

standard reduction rules [28] given below:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

(Select essential rows) If a column contains only a single cross and blanks elsewhere,
then the row with the cross must be selected. The row is deleted together with all
columns in which it has crosses.

(Remove columns with only dots) If a column has only a single dot and blanks
elsewhere, the row containing the dot must be deleted together with all columns in
which it has dots.

(Remove dominating columns) A column C; dominates a column C; if it has all the
crosses and dots of C;. If C; dominates C;, then C; is deleted.

(Remove dominated rows) A row R; dominates a row R; if it (a) has all the crosses
of R;; and (b) for every column C), in which R; has a dot, either R; has a dot in
(', or there exists a column €, in which R; has a dot, such that, disregarding the
entries in rows R; and R;, C, dominates Cy. If R; dominates R;, then R; is deleted

together with all columns in which it has dots.
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Rule 5: (Remove rows with only dots) If a row only has dots, then the row is deleted together
with all columns in which it has dots.

It is important to note that when applying rule 4, two rows may mutually dominate each
other. These ties are resolved by picking the rule that provides symmetry between different
regions of the same signal. This symmetry often leads to gates being shared between
regions. The table is completely solved when all columns are eliminated, and the context
signals are those corresponding to the essential rows selected by Rule 1. While in practice
these reduction rules are often sufficient to solve the table, some tables may be cyclic. To
solve the cyclic table, we use a branch and bound method.

For the SEL, the CC table for (out2, |,0) is reduced to the one shown in the left five
columns of Table 3 after removing dominating columns. The CC table is further reduced to
the single rightmost column of Table 3 after removing dominated rows. This leaves us with
a choice of using either out2; or out2, as a context signal. In this case, they are equivalent,

and we arbitrarily select out2;.

Table 3: CC table for (out2, |,0) from the SEL after removing dominating columns.

| Signal | 9 [ 11 [12] 14 [ 14 |

zfer;

sell, o
outl; X | o X
out?; X | X X X X
zfer,
data,
sel,

outl, o) X
out2, X | X | X | X X

For the SEL, we derive a gate-level timed circuit implementation with 27 literals shown
in Figure 38(a). If all the timing information is ignored, we obtain a gate-level speed-
independent circuit implementation with 44 literals shown in Figure 38(b). Besides being
nearly 40 percent smaller, the timed circuit has reduced latency since it requires gates with
at most 3-inputs while the speed-independent circuit requires many large gates including

one with 6-inputs.
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Figure 38: Gate-level (a) timed and (b) speed-independent circuits for the SEL.

4.6 Synthesis Results

Our synthesis results are tabulated in Table 4. In addition to the SEL described above,
another design of the SEL (SEL2) is given in the table in which the selection of the output
port is performed using a single conditional signal rather than dual-rail encoding and three
signal wires. Another example in the table is a memory management unit (MMU) which
was originally designed speed-independently in [50]. The last two examples, a DRAM
controller (DRAM) and the target-send burst-mode portion of a SCSI controller (TSBM),
were originally specified using burst-mode finite-state machines in [58].

First, we compared the literal counts (Lit) for the gate-level timed circuits derived using
the generalized C-element (gC) technique and our standard C-implementation techniques.
Our results show only about a 10 percent increase in literal count for generating a safe
implementation that has no internal hazards. For the first three examples, the timed imple-
mentations are compared with those produced by SYN and SIS in terms of area represented
by transistor count and delay represented as ratio of fanout of four inverter delays. The
timed implementations are about 40 percent smaller and faster than the speed-independent
ones produced by SYN. Compared with SIS, the area gains are about the same, but the
improvement in delay is now about 50 percent. The table also gives the number of reach-
able states (| @ |) for timed and other methods showing up to two orders of magnitude less
states in the timed case. In fact, due to the large state space size of the MMU example,

SIS runs out of memory during synthesis. The last two examples are compared with the
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3D method with the 3D specifications and results taken from [81] assuming a 0.3ns inverter

delay in a 0.8um CMOS process. For these designs, our timed circuits show about a 30

percent improvement in area (comparing literal count) and delay.

Table 4: Synthesis results.

Timed Other Design Methodologies
gC ATACS SYN SIS 3D
Ex. || | Lit | Lit ‘ Area ‘ Del | |®]| | Area ‘ Del | Area | Del | Lit ‘ Del
SEL 53| 25| 27| 104] 5] 256] 160] 7] 158] 11]unja|n/a
SEL2 36 | 19| 21 76 5 128 108 | 6.5 130 | 11.5 | n/a | n/a
MMU 187 | 56 | 62| 210 | 4.5 | 23,296 | 412 | 10 | out of mem | n/a | n/a
DRAM 791 381 38| 110 | 5.5 n/a| n/a|n/a| n/a| n/a| 46 7
TSBM || 113 | 32| 33| 140 | 4.5 n/a| n/a|n/a| n/a| nfa| 58| 7.5
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Appendix

Each of the synthesis steps described in this chapter has been implemented within ATACS.
After generating a RSG using the commands described in the previous chapters’ appendices,
the next step of synthesis is to use the command findreg to find the excitation regions and
trigger signals, represented using enabled and trigger cubes. In verbose mode, the enabled
and trigger cubes are output to a file named (filename).es. An example of such a file for
the SCSI protocol controller is shown in Figure 39. The actual regions can be displayed or
printed using the command printreg which generates a file for each region and each set of
quiescent states which can be viewed using Tom Rokicki’s parg program. While finding the
regions, if a trigger signal is found to not be stable in the excitation region, an exception is
raised which tells which rules are not stable, or persistent. It may be possible to solve this
persistency problem by adding additional rules to the specification. The command addpers
attempts to find such rules.

REGIONS:

STATEVECTOR:INP go INP ack q req rdy

EVENT: ENABLED CUBE: TRIGGER CUBE

+q : 0X010 : 0XX1X

—q : 01101 : XXXX1

+req : X0000 : X0XX0

—req : 01110 : X11XX

+rdy  : 01100 : XXX0X
—rdy  : 1X001 : IXXXX

Figure 39: Enabled cubes and trigger cubes from the SCSI protocol controller.

The next step of synthesis is to find the conflicts and generate the CC tables us-
ing the command findconf. In verbose mode, the CC tables are written to a file named
(filename).crt. An example of a CC table from the SCSI protocol controller is shown in
Figure 40. It is possible that no context signal can be found to solve a conflict, and an
exception occurs. To solve this problem or a persistency problem, the command exact can
be used to switch to a more general algorithm which is described in [7]. Essentially, this
algorithm allows multiple-cubes to be used to cover a single excitation region.

After the tables are generated, they are solved using the command findcover. In ver-
bose mode, a list of context signals which need to be added are stored to a file named

(filename).cr. If the table is cyclic, an exception occurs. A heuristic routine to solve cyclic
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CONTEXT RULE TABLES:
STATEVECTOR:INP go INP ack q req rdy
Context Rule Table for rdy+

1F00F: "go q "rdy

FF000: "go q

1000F: "go ack q "rdy

FOORO: "go ack q

0F000: ¢

000RO0: ack q

Figure 40: CC table from the SCSI protocol controller.

tables has been implemented which arbitrarily selects one signal to add as a context signal
then reattempts to solve the table. This routine is invoked using the command resolve.

Interfaces to other synthesis systems is also provided, and they were used to do the
comparisons in this chapter. The commands sis and syn change modes between using
ATACS, SIS, and SYN for synthesis. The command storeg stores a graph file which can be
used as input to SIS. The command storesg stores a SG file which can be used as input to
SYN. The command storenet stores a circuit net file which can be read into SYN.

Using the command storeprs, the final synthesized circuit is output as production rules
[44] which are stored to a file named (filename).prs. The command gatelevel can be used
to toggle between finding a generalized C-implementation and the gate-level standard C-
implementation. The production rules for the SCSI protocol controller are shown in Fig-
ure 41. Each production rule consists of a type, a signal name, and a guard. The guard
is a conjunction of signals which represents a cube in the implementation. If the type and
signal name of the production rule are of the form +s, the guard represents a cube from
the set network for the signal s. If they are of the form —s, it is from the reset network. If
there is no type given, then the guard represents a combinational implementation. If they
are of the form “s, then the guard represents an inverted combinational implementation.
[+q: ("go & req)]
[—q: (rdy)]

[+req: (Tack & “rdy)]
[—req: (ack & q)]
[+rdy: (q & “req)]
[—rdy: (go)]

Figure 41: Production rules from the SCSI protocol controller.



Chapter 5

Technology Mapping

Come, and take choice of all my library

— William Shakespeare

The previous chapter introduced an automatic procedure for the synthesis of gate-level
timed circuits and demonstrated that timed designs can be significantly smaller and faster
than designs generated using other asynchronous design methodologies. These timed de-
signs, however, are synthesized without considering explicitly the available gate library. In
particular, these designs may require gates with a large number of inputs which is not prac-
tical for existing technologies. In CMOS, for example, gates with more than four transistors
in series are typically considered to be too slow, and they must be decomposed. While in
a synchronous design high-fanin gates can be decomposed in an arbitrary manner, in an
asynchronous design decomposition must be done in such a way as to not introduce haz-
ards. This chapter addresses the problem of finding hazard-free mappings of timed circuits
to limited-fanin gate libraries.

It has been shown for fundamental mode asynchronous circuits that synchronous tech-
nology mapping techniques can be applied with small modifications to account for hazards
[65]. The fundamental-mode assumption, however, limits the concurrency that can be spec-
ified so these results cannot be applied to our timed circuit design style.

Technology mapping of speed-independent circuits has also been addressed [6, 64, 7].
The techniques employed use heuristics to investigate various decompositions, and when
necessary add additional connections called acknowledgment wire forks to restore correctness
to the decomposed implementation. These forks increase both the fanin and fanout of the

gates in the implementation degrading the performance. These techniques also do not take

80
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timing into account and would produce unnecessarily conservative and possibly incorrect
timed circuit implementations.

To our knowledge, the only procedure for technology mapping of asynchronous circuits
that takes timing into account is the one within Berkeley’s SIS [38]. We have shown in the
previous chapter that the implementations that are produced by SIS can be inefficient in
terms of circuit area and delay due to the cost of the delay elements that must be added
to remove hazards and the fact that timing information is neglected until late in the design
process.

In this chapter, we describe an automatic procedure to map timed circuits to practical
gate libraries without needing to add any delay elements. Beginning with a specification,
an unlimited-fanin circuit implementation, and a gate library description, an automatic
procedure is employed to investigate possible decompositions of any gates larger than those
found in the gate library. Timing information is utilized to significantly reduce the size
of the search space. From this reduced search space, each decomposition is employed to
guide the resynthesis of a hazard-free timed circuit which is then mapped to the given gate

library.

5.1 Gate Libraries

The general structure of our implementations is in the from of a standard C-implementation
as depicted in Figure 37. In this structure, the upper sum-of-products represents the logic for
the set, the lower sum-of-products represents the logic for the reset, and the result is merged
with a C-element. When available in the gate library, this structure can be implemented
directly in CMOS as a single compact generalized C-element with weak-feedback as shown
in Figure 35(b) or as a fully-static generalized C-element as shown in Figure 35(c) [44].
When these complex gates are not available, the standard C-implementation structure is
constructed using combinational gates and a C-element. If the library includes AND-OR-
INVERT blocks, the sum-of-products may be mapped to them, otherwise discrete AND
gates and OR gates must be used. We require that the given gate library contain at least
2-input AND gates, OR gates, and C-elements with arbitrary inverted inputs. The presence
of AND-OR-INVERT blocks and generalized C-elements is optional.

Since delays for transitions on output signals must be specified before the gates gener-

ating them are produced, it is necessary to have a good estimate of the delay of these gates
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to produce efficient timed circuits. The solution that we propose is to use a delay of 0 for
the lower bound and an automatic analysis of the given library to derive the upper bound
of the delay from the largest gate structure of the form shown in Figure 37 that can be built
from the limited-fanin gates found in the library. Using this technique to estimate delays,
however, means that when a network of gates for an output signal includes a high-fanin gate
which must be decomposed to multiple levels of logic, the delay associated with transitions
on this output signal may be larger than originally estimated. This increase in delay must
be reflected in the specification, and it may change the resulting implementation. Since de-
composition techniques for speed-independent designs do not take this into consideration,

they may produce incorrect circuits when naively applied to timed circuits.

5.2 Decomposition

Given an orbital net, an arbitrary gate-level timed circuit implementation, and a gate li-
brary, the goal of technology mapping is to implement the circuit using only the limited
fanin gates found in the given library optimized to some cost function such as area or delay.
The technology mapping procedure first decomposes each gate in the initial implementation
with a fanin higher than that found in the gate library. Next, the partitioning step trivially
identifies each signal network as a cone of logic. Finally, the matching and covering step
is used to bind portions of each signal network to gates found in the library to produce
an efficient implementation. It was shown in [64] that for speed-independent circuits the
decomposition of high-fanin OR gates from the standard C-implementation structure can
be done safely in any arbitrary manner, and that the synchronous matching/covering tech-
niques can be used with minor modifications. These results can be easily extended to our
class of timed circuits. However, for the AND gates, or cubes, care must be taken when
decomposing them so as not to introduce hazards. Therefore, it is the decomposition of
these cubes which the remainder of this section addresses.

Our procedure to decompose each high-fanin AND gate searches for a decomposition
that uses the minimum number of logic levels. This is accomplished by adding new signals
to the original specification which can be used to decompose each high-fanin gate without
changing the concurrency originally specified. Each decomposition results in a modified
specification which is then resynthesized to obtain a new timed circuit implementation that

is guaranteed to be hazard-free. This decomposition procedure first attempts to decompose
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the circuit using one new signal for each high-fanin gate. If no such decomposition can be
found that successfully decomposes all gates to ones found in the given library, then the
specification which results in the implementation that requires the smallest fanin gates is
taken as the new starting point. Using this new specification, an additional signal is added
to decompose each remaining high-fanin gate. This procedure terminates either when all
high-fanin gates have been successful decomposed into multi-level logic implementations,
or when the minimum fanin of the best implementation and the number of gates needing
to be decomposed is no longer decreasing. In the remainder of this section, we explain our

decomposition procedure in more detail.
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Figure 42: (a) Part of the orbital net for the tsbm, (b) a standard C-implementation, and
(c) a generalized C-implementation of the signal DReq,.

5.2.1 Searching the Decomposition Space

A decomposition of a cube is a partition of the set of trigger and context signals into two
subsets: an exztracted set and a reduced set. The signals in the extracted set are used as
trigger signals for a transition on a new signal that is added to decompose the high-fanin
gate. For a particular cube composed of n signals, there are 2 — 1 different decompositions.
For example, the 8-input AND gate in Figure 42(b) which must be decomposed has 255
different decompositions.

Fortunately, we do not need to examine all of them as many decompositions which never
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lead to a successful decomposition can be safely eliminated from consideration. When two
signal transitions are ordered, if the signal with the later transition is extracted as a trigger
signal for the new signal transition, the signal with the earlier transition need not also be
extracted. The earlier transition, if extracted, would not be a trigger signal for the new
transition as two trigger signals are never ordered. If the signal with the earlier transition
is needed in the implementation of the new signal transition, it is as a context signal.

We use the above intuition in two ways. First, since all trigger signal transitions occur
later than any context signal transition, any decomposition with an extracted set that
contains both trigger and context signals from the original gate is eliminated. Second,
a timing analysis algorithm such as the one described for deterministic specifications in
Chapter 3 or for more general specifications in [35] is used to determine the order of context
signal transitions. Any decomposition composed of two context signals that have ordered
transitions is eliminated. By taking advantage of ordering information, the number of
possible decompositions for the 8-input AND gate from the tsbm is reduced from 255 to
only 23.

5.2.2 Decomposition Through Resynthesis

For each signal which needs to be decomposed, our procedure selects a decomposition from
the set of potential decompositions that remains after applying the criterion described in
the previous subsection. The original specification is then modified to incorporate a new
signal for each signal being decomposed. For simplicity, we explain here the case in which
the orbital net does not contain conditional behavior, or choice. We describe an example
with choice later.

The procedure first adds a rising transition for each new signal to the orbital net. For
each signal in the extracted set, this new transition has a behavior place in its preset from
the corresponding transition. The timing requirements on these places have a lower bound of
0 with an upper bound derived as mentioned earlier from the maximum delay for a limited-
fanin standard C-implementation. If the extracted set is composed of trigger signals, the
original connections (places and transitions) between the corresponding transitions on these
trigger signals and the rising (falling) transition on the signal being decomposed are replaced
by a single behavior place which is added to the postset of the new rising transition. If the
extracted set is composed of context signals, a constraint place with timing requirement

(0,00)c is added to the postset of the new rising transition and the preset of the original
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rising (falling) signal transition. When the falling (rising) transition of a signal also needs
to be decomposed, it is done with the falling transition of the new signal using the same
procedure just described. Otherwise, the falling transition of the new signal is placed
between all the trigger signals for the original falling (rising) transition and the original
falling (rising) transition itself.

This new specification is then resynthesized using the automatic procedure from [54] to
produce a new hazard-free timed circuit implementation. If the new implementation does
not have any high-fanin gates, the decomposition is successful. Otherwise, the procedure
must repeat using a different decomposition for each remaining high-fanin gate.

Returning to the tsbm, we apply our technology mapping procedure to the specification
and implementation shown in Figure 42 with a gate library that contains 4-input AND
gates, OR gates, C-elements, and generalized C-elements. One decomposition for the 8-
input AND gate from the tsbm has an extracted set that contains only the trigger signal
DSend;. The portion of the new orbital net corresponding to this decomposition is as
shown in Figure 43(a). This new specification results in the generalized C-implementation
shown in Figure 43(b). Unfortunately, this decomposition results in an implementation that
requires a 7-input gate. Another possible decomposition is the one with an extracted set
that contains just the context signal —DSend, which results in the portion of the orbital
net shown in Figure 44(a). Note that the place between the new signal transition z; |
and the transition on the signal being decomposed DReq, T is now a constraint place. This
decomposition produces an implementation which requires only one 2-input gate (note the
generalized C-element for 1 only requires at most two transistors in series) and one 3-input
gate shown in Figure 44(b).

Various cost functions can be used to evaluate different successful decompositions in
terms of circuit area and delay. Because the number of different decompositions is usually
small, it may be computationally feasible for the decomposition procedure to analyze each
decomposition, and select the one with the lowest cost that decomposes all high-fanin gates
to gates found in the library. As a heuristic to speedup the process, our procedure exits after
a decomposition is found that decomposes each high-fanin gate to the limited-fanin gates
in the given library. Although a better decomposition may exist, due to a good ordering
heuristic employed, the first successful decomposition found is typically close to the optimal

in terms of area and delay.
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(a)

Figure 43: (a) Part of the orbital net for a decomposition using a trigger signal, and (b)
corresponding generalized C-implementation.
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Figure 44: (a) Part of the orbital net for a decomposition using a context signal, and (b)
corresponding generalized C-implementation.
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5.2.3 Multi-level Decompositions

If the procedure is not successful at decomposing all high-fanin gates by adding only one
additional signal, the decomposition procedure is iterated to produce multiple levels of
logic. After the first pass, if all gates have not been successfully decomposed, the procedure
selects the decomposition for each gate which requires the minimum gate size and uses its
corresponding specification and implementation as input to a new iteration of the procedure.
This step is repeated until an implementation is returned that either uses only gates in the
library or has a minimum gate size that is no longer decreasing. In the second case, our
procedure is unable to generate an implementation using the given specification and gate
library. To handle this situation, either the requirements in the specification must be relaxed

or carefully designed atomic gates may need to be added to the gate library.

DSend,! DSend;1
[0, 5 0, 5
xgt * * Xol + DACkil
[0, 50 o, 5b
DReq,?

(a)

Figure 45: (a) Part of the orbital net for a multi-level decomposition, and (b) corresponding
generalized C-element implementation of DReq, with a maximum fanin of two.
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For the tsbm example, if we reduce the library size to include only 2-input gates, it
can no longer be decomposed using only one new signal. The best decomposition that the
procedure finds is the one shown in Figure 44(b) which uses only one 3-input gate which
must be further decomposed. The orbital net shown in Figure 44(a) is now taken as the
initial specification and the circuit shown in Figure 44(b) is the initial implementation. For
this new iteration, the procedure adds an additional signal z, to decompose the 3-input
gate. A portion of the orbital net for a decomposition that extracts the trigger signal
DSend; is shown in Figure 45(a). Synthesis applied to this net results in a generalized C-
implementation shown in Figure 45(b) using three 2-input gates. Note that z1 is a context
signal in the implementation shown in Figure 44(b), and for that reason, it can move to the

gate implementing 5.

5.3 Example

We present another example, an optimized version of the port selector (SFELopt), to illustrate
the application of our decomposition procedure to a circuit with conditional behavior, or
choice. Part of the original orbital net for the SELopt is shown in Figure 46(a), and the
original gate-level timed circuit implementation is shown in Figure 47(a). If we restrict our
library to gates with a maximum fanin of 3, there is a 4-input AND gate that is shared to
implement sel, and data, which must be decomposed. A new signal is added for each of
these signals, but we concentrate on the signal z; which is added to decompose sel,. Part of
the orbital net after a decomposition of sel, is shown in Figure 46(b). This decomposition
has an extracted set which consists of the context signals —outi, and —out2,. The procedure
detects that the corresponding transitions on these context signals occur on disjoint paths,
so these transitions share a single place that is added to the preset of 2y ]. Since there
are two falling transitions on the signal sel,, the procedure adds two falling transitions on
the new signal z;. Applying synthesis to this new specification produces the decomposed
implementation shown in Figure 47(b). If we further restrict the library to only contain 2-
input gates, there are three gates which must be decomposed. The resulting implementation

is shown in Figure 47(c).
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a decomposition of the signal sel,.

X 00, b
T 2a T xfer;t

selyt

(40, 260

90



CHAPTER 5. TECHNOLOGY MAPPING 91

xfer;
outl;

xfer;
out2; fer
o

0u'(2
xfer;

day 31 dat outl;

dat
dﬁ ut1 out2, er;
outz;

xfer;

xfer;
xfer, X

xfer;

g

oull data,, selo

outl,
outz out2,
xfer,

sel2, datay
o
outl,
oullu data, sel, °
oulZ xerg
§a, da‘% sl data;
xfery
oull out2, out2,
xfer,

©

W

&

Figure 47: The gate-level timed circuit implementation of the SELopt (a) before decompo-
sition; after decomposition to (b) 3-input gates and (c) 2-input gates.

5.4 Technology Mapping Results

The decomposition procedure has been used to map several examples as reported in Table 5.
First, a timed version of the target-send burst-mode (¢sbm) cycle of a SCSI data transfer
controller [82] is synthesized using gate libraries with a maximum fanin of 4, 3, and 2.
The next three rows are implementations of the optimized port selector (SELopt) [54] also
using libraries with a fanin of 4, 3, and 2. The last example is an asynchronous memory
management unit [50].

The gate library used for each example contains gates with a maximum fanin size as
specified in parentheses next to the name of the example. The next two columns give the
number of gates in the standard C-implementation as well as the number of gates that are
larger than the maximum fanin and must be decomposed. All high-fanin gates were success-
fully decomposed. The area and latency for the decomposed standard C-implementation
are given in the next two columns followed by the area and latency after the implementa-
tion is mapped to a library which contains generalized C-elements. Area is reported as the
implementation’s transistor count. Latency is the longest delay through a block of logic gen-
erating an output transition driving a fanout of 4, and it is reported normalized to the delay

of a single inverter (about 300ps for 0.8zm CMOS process at nominal conditions). Here, we
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Table 5: Technology mapping results.

# of AND/OR/C gC Library

# of Gates to Area | Latency | Area | Latency Iter
Example Gates | Decompose | (xtors) (inv) (xtors) (inv) (num)
tshm (4) 15 1 122 8.1 70 4.9 1
tshm (3) 15 1 122 8.1 70 4.9 1
tsbm (2) 15 3 154 72 87 5.7 %5
SELopt (4) || 11 0 66 5.3 15 3.8 0
SELopt (3) || 11 5 70 5.3 53 3.8 1
SELopt (2) || 11 1 108 85 67 12 3
MMU (4) 27 4 186 5.8 132 5.2 14

92

see that being able to map the implementations to generalized C-elements produces more

than a 30 percent improvement in both area and delay. Finally, the number of iterations

necessary to decompose the high-fanin gates is shown. In all case, the decompositions are

completed in a reasonable number of iterations.
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Appendix

The decomposition procedure has been automated within ATACS. After synthesis, the result-
ing implementation is checked to see if it requires high-fanin gates. The maximum allowed
gate size is set by the command maxsize. When high-fanin gates are detected, the command
breakup can be used to run the decomposition procedure. The upper bound of the timing
constraint which is added for new rules on the new signals added is set using the command
gatedelay. The search of the decomposition space can be done both automatically or manu-
ally, set by the command manual. When the decomposition procedure is done manually, it
prompts the user to input the decomposition to try for each gate being decomposed. The
value of the decomposition determines which signals are to be in the extracted set. For a
production rule [*s : (ap&a1& ...a,)], the literal a; is included in the extracted set if the
value of the decomposition AND’ed with 2¢ is true. For each decomposition, the procedure
first generates a new timed ER structure which describes the new orbital net and stores it
to the file named (filename)BRK.er. Synthesis is applied to this new structure, and if the
circuit no longer has high-fanin gates, the procedure terminates. Otherwise, the procedure
attempts a new decomposition. If no decomposition is found that breakups all gates with
one new signal for each high-fanin gate, then the procedure takes the best decomposition it
found so far and attempts to decompose it by adding another new signal. This procedure

repeats until a decomposition is found or the maximum gate size is no longer decreasing.



Chapter 6

Design Examples

Erample is always more efficacious than precept.

—Samuel Johnson

This chapter describes three examples in detail. The first is a controller for a fully asyn-
chronous memory management unit (MMU) which is used to illustrate that significant
improvements in circuit complexity can be achieved using timing constraints over tradi-
tional speed-independent design methods. The second design is an asynchronous DRAM
controller which interfaces with a synchronous environment. The resulting implementation
is compared with a synchronous implementation designed using the synchronous synthesis
package within Berkeley’s SIS. Considering the clock as just another input, synchronous
circuits can also be designed using our methodology. The last example is therefore a syn-

chronous design: a two-bit counter.

6.1 MMU Controller

The MMU is designed for use with a 16-bit asynchronous microprocessor [45], and the
original implementation was derived using Martin’s synthesis method [50]. The basic op-
eration of the MMU is to convert a 16-bit memory address to a 24-bit real address. There
are six possible cycles that the MMU controller can enter, depending on data from the
environment. The 6 cycles can be independently designed and merged together to get the
overall implementation. For simplicity of presentation, the first subsection describes only
the design of one cycle: the memory data load (MDI) cycle. The next subsection presents
the complete implementation of the MMU controller.

94
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6.1.1 The Memory Data Load Cycle

A simplified block diagram is shown in Figure 48 in which only signals involved in the MDI
cycle are depicted.

Memory
Address 16 cc 16
A
Bol 4P
MDI; MSI,
Micro- MDl> MMU ™ Memory
Processor |4 ° |Controller ‘MSli Interface
A
RA, RA;
Y
Segmentation ﬂ
Register S

Figure 48: Block diagram for the MDI cycle of the MMU controller.

The high-level CSP specification for the memory data load cycle is:
[ MDI— (RA || B); MSt, MD]]
This specification is initially transformed into the following handshaking expansion:

«[[MDI; N ~RA]; RA, 1;[~Bi]; B, T;[RA; A Bi A = MSL]; MS, 13 [MSE]; MDI, 1;
RA, |; B, |;[-MDL]; MSI, |; MDL, |],

which can be converted to the constraint graph shown in Figure 49.

The transformation from a CSP specification to a handshaking expansion is not unique.
A more concurrent constraint graph shown in Figure 50 also satisfies the high-level CSP
specification. This specification is simply a reshuffling [44] of the earlier one. This reshuf-
fling is not considered in [50] because it results in a complete state coding violation [17].
This means that the more concurrent specification cannot be implemented without adding
state variables. Adding state variables not only changes the specification, but can also add

extra circuitry and/or delay to the implementation. This cost often outweights the benefit
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Figure 49: The cyclic constraint graph for the unoptimized MDI cycle.

of the higher degree of concurrency. This particular problem can also be solved by adding
persistence rules, but this can reduce the concurrency in the specification. If conservative
timing constraints are also added, the reduced state graph of the more concurrent specifica-
tion shown in Figure 50 does not have a complete state coding violation, and thus, it can be
implemented without adding state variables or persistence rules. To make the specification
in Figure 50 persistent, three arcs are added to the constraint graph as shown in Figure 51;
the specification can now be implemented speed-independently. As shown later, the speed-
independent implementation is still more complex than the original implementation derived
from the specification in Figure 49.

A speed-independent and a timed implementation of the specification shown in Figure 51
are compared. For the timed implementation, the timing constraints used are depicted in
Figure 51. The lower bound of the timing constraint on MDJ; | states that the processor
does not issue memory requests faster than every 30ns. The lower bound of the timing
constraint on MSL T states that the DRAM access time takes at least 30ns. Both of their
upper bounds are infinite since the processor could choose never to do a load, or the interface
could choose never to process the request. The reseting of the acknowledgement (i.e., MDI; |
and MSL |)is assumed to be somewhat faster, and must occur within 5 to 30ns of the reset

of the request. The other numbers were obtained from SPICE simulations of the datapath
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Figure 50: The cyclic constraint graph for the optimized MDI cycle.

[2.5,13]

[2.5,13]

All unmarked
5307 rules have timing

constraint /0, 1].

G101,

Figure 51: The cyclic constraint graph for the persistent MDI cycle.
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circuitry for a 0.8um CMOS process. The comparator, denoted B;, has a delay of between
2.5 to 13ns, and the registers, denoted RA;, have a delay of between 2 to 9ns depending on
temperature, voltage, and processing variations. All output signals have a delay of 0 to 1ns
where 1ns was found to be the maximum delay of the gates in the library used.

In the MMU specification, there are five events with multiple rules enabling them:
RA, 1, B, T, MSL, 1, MSI, |, and MDI, |. Timing analysis determines that at least one rule
associated with each event is redundant. In all, 6 of the 15 rules on output signals in the
original specification are redundant. This includes the 3 persistence rules. To determine
which context signals must be added, the first step is to determine the reduced state graph
and the enabled cube for each signal using the timing constraints. A state graph generated
without any timing constraints results in 92 states while the reduced state graph only has
22 states. Using the reduced state graph, the timed implementation needs 5 context signals
as opposed to 7 needed for the speed-independent implementation.

After adding context signals to our original specification, a speed-independent imple-
mentation requires 22 literals (note that we define a literal to be a signal in a guard) as
shown in Table 6. The timing constraints reduce the circuit to only 10 literals. Thus, our
circuit complexity is reduced by over 50 percent using conservative timing constraints. A
generalized C-implementation for both is shown in Figure 52. Note that this reduction is
possible not only because of removing redundant literals, but also because the gate needed

for implementing RA, and B, can now be shared after the optimizations.

Speed-Independent PRs H Simplified Timed PRs
MSIL, AN MSL, —  MDI, | MDI; N MSI, — MDIL, |
-~ MSIl, A-MDI;, — MDI, | -MDl; — MDI, |
“MDI, N =MSlL, N=RA; AN MDI;, — RA, - MDI, N=MSl, N MDl;, — RA,|,B,7
MSI, — RA,| MSl, — RA,|.B,|
- MDIl, N -MSl, N\=B; N MDl; — B,
MSl,, — B, |
RA N B, A—=MSEANRA; NB;, —  MSL T RA; NB; — MSIL,
“RA, AN-B, AMDI, — MSI, | MDIl, ~— MSIL, |

Table 6: Production rules for speed-independent and timed circuits for the MDI cycle.
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Figure 52: (a) Timed and (b) speed-independent implementations for the MDI cycle.

6.1.2 Complete MMU

The specification for the complete MMU controller process is shown in Figure 53. From

this specification, our synthesis procedure obtains a reduced state graph which contains

187 states. From the reduced state graph, the procedure obtains a gate-level timed circuit

implementation with 62 literals depicted in Figure 54(a) using only basic gates with at

most 3-inputs. For a gate-level speed-independent circuit implementation, the state graph

explodes to 23,296 states resulting in the circuit implementation shown in Figure 54(b) that

is not only significantly larger, 114 literals, but also significantly slower since it requires gates

as large as 8 inputs!
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module MMU;

process control;

i [LIMDY 1] — (([RA; 11 RA, 1) || ([BL: |V B2, |V B3, 1J; B, 1)) [RA; 1];

[B1; I N LSR; |];— LSR, 15 (RA, | || By |); [LSE; 1]; MDL, 1; LSR, |5 [MDI; |]; MDY, |
[B2i T A LSW; |]s— LSW, 1:(RA, |5|| By |); [LSW; 1]; MDL, 1; LSW, |5 [MD§ |]; MDL, |
[B3; 1 A MST; |];— MSL, 15 (RAs L[| B |); [MSG 1]; MDI, 1; MSL |; [MD4 |}; MDI, |

|
]l
| [MDs; 1] — ([WA; []|; WA, 1) || ([BL; |V B2 | v B3; |]; B, 1)) [WA; 1];

[ [BLi T A SSR; |];— SSR, 15 (WA, ||| B |);[SSR; 1] MDs, 1555, |; [MDs; |]; MDs, |

| [B2 1 ASSWi |]; — SSWo 15 (WA, L5 ]| By 1); [SSW; 1]; MDs, 15 55W, |; [MDs; |]; MDs, |
| [BS) T A MSS’L H - MSSO Tv(WAO l; || Bo l)v [MSSZ T]v MDSO T; MSSO l; [MDSZ Hv MDSO l

]

Il

endprocess
etc.
endmodule

Figure 53: Part of the timed HSE specification for the complete MMU controller.
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Figure 54: Gate-level (a) timed and (b) speed-independent circuits for the MMU controller.
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6.2 DRAM Controller

The DRAM controller is an interface between a synchronous microprocessor and a DRAM
array. Typically, a DRAM controller is implemented as a synchronous circuit. Since a
DRAM controller must interface with a synchronous environment, it cannot be implemented
as a speed-independent asynchronous circuit, but it can be implemented as a timed circuit
that satisfies certain timing constraints.

A block diagram for the entire DRAM interface is shown in Figure 55. The DRAM
controller was originally specified using the burst-mode finite-state machine representation
shown in Figure 56 [58]. From the burst-mode specification, we obtained the timed HSE
specification shown in Figure 57. The DRAM controller has three possible modes of opera-
tion: refresh, write, and read. The generalized C-implementation for the DRAM controller
is shown in Figure 58. Note that while some gates are shown as multi-level implementations,
they are actually implemented with single complex gates such as the one for cas shown in
Figure 59. This implementation is not hazard-free at the gate-level. The gate-level syn-
thesis procedure produces the gate-level hazard-free timed circuit shown in Figure 60(a).
While the two implementations have a different structure, they are equivalent in terms of
literal count (38 literals each) before optimizations, so there is little cost, if any, in achieving
hazard-freedom at the gate-level. A synchronous implementation of the DRAM controller
shown in Figure 60(b) is generated using Berkeley’s synchronous synthesis program SIS
[62]. Surprisingly, our timed design is about 40 percent smaller and 30 percent faster. This
result comes from the sequential don’t-care information that is taken into account by the
asynchronous nature of our synthesis procedure. There is also a significant improvement in

power consumption since our timed design produces no spurious transitions.



CHAPTER 6. DESIGN EXAMPLES

Refresh Addr Counter | Refresh Addr
Ll
DRAM Addr

S [Column Addf
Q
% Row Addr §
;é’ rlw — | asw selca &
S[as > asr a rfin %
Q ds 3| & dds S
% rfack| S rfreq > g' E
Q ‘rfclk; | | b C S ras
= " Q a 8 cas

8 10 we

4 dtack |

Figure 55: Block diagram for a DRAM interface.
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Figure 56: The burst-mode specification for the DRAM controller.
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module DRAM,

process control;

« [ [rfreq |] — rfip 15[c s ras [s[a | A b LA rfreq1]; (rfipl || ras1);[alT AbT A cT]
| lasw |] — ras |;[a|]; (dtack | || we | || selca);[b| A dds |];cas |;

[asw | A dds 1];(ras | || cas | || dtack ] || we | || selca]);[al A b1]
| lasr | A dds |] — ras |;[a |]; (dtack | || selca 1);[b |]; cas |;

[asw | A dds 1];(ras | || cas| || dtack | || selca |);[aT A b 1]
Il

endprocess
etc.

endmodule

Figure 57: Part of the timed HSE specification of the DRAM controller.
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Figure 58: Overall implementation of the DRAM controller.
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Figure 59: Complex-gate implementation of the cas signal for the DRAM controller.

dtack

ras

selca

cas

(b)

Figure 60: (a) Timed and (b) synchronous circuits for a DRAM controller.
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6.3 Two-bit Synchronous Counter

The two-bit synchronous counter is specified in Figure 61(a). Additional constraints, anal-
ogous to setup times, are added to make the cyclic constraint graph strongly connected as
shown in Figure 61(b). The complex gate implementation synthesized for the counter is
shown in Figure 62(a). Upon closer inspection of the transistor-level diagram for this gate
shown in Figure 62(b), we observe that the gates are actually typical synchronous latches,
and the circuit can be redrawn as shown in Figure 62(c). This final implementation takes
6 transistors for the logic and 16 for the latches. The critical path through the logic is
an inverter, a pass gate, and a latch (approximately 2.5 inverter delays). Using SIS and a
standard synchronous gate library, the implementation for the counter shown in Figure 63 is
derived. This implementation uses 32 transistors and has a critical path through an inverter

and 2 NAND gates and a latch (approximately 6 inverter delays).

)
(o o e

¢u/1
[19,21]

[05]

o

[19,21] o [05] [19,21]

1 s
@ [1921]y (03] @ [1921]y [0, - - o
Cor )

(a) (b)

Figure 61: The cyclic constraint graph specification for a two-bit synchronous counter: (a)
initial specification and (b) final specification.

Our implementation is more than 30 percent smaller and more than twice as fast as the
one produced using the synchronous synthesis tool SIS. Comparing the implementations, we

find that both implement C{) using a single inverter. The difference is in the implementation
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Figure 62:
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Complex-gate implementation of a two-bit synchronous counter.

Figure 63: Implementation of a two-bit synchronous counter derived using SIS.
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of C]. Our timed circuit implementation makes use of the information that C{ only changes
in states where ( is high. Thus, it is implemented using an inverter and a pass gate which
is gated on (. SIS’s implementation, on the other hand, does not take into account the
sequencing of the states. For example, if a sequence of states in which the counter is
counting 00-11-01-10 were possible, this circuit would generate the correct next state given
the current state. This extra logic, however, is unnecessary since this counter always goes

through the states in the same order: 00-01-10-11-00,etc.
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Verification

Prove all things; hold fast that which is good.
—Bible

Verification is the process of checking if the circuit built satisfies its specification. There are
many reasons to use verification. First, even if a circuit is automatically synthesized using
a formal, systematic synthesis procedure, such as ours, verification provides a double-check
to discover bugs in the synthesis tools. Second, since timing assumptions must be made at
the outset to synthesize a timed circuit, verification can be used to check these assumptions
after the circuit has been synthesized. Third, designers often perform hand-optimizations
to synthesized circuits, and these optimizations can be checked using verification. Finally,
verification can be used to measure the robustness of a design to changes in design parame-
ters. Although a circuit may be synthesized for one set of bounded delays, it may still work
when some of the delay bounds change.

Our verification procedure requires both a specification and circuit implementation ei-
ther given in or translated to an orbital net representation. The orbital net for the specifi-
cation is mirrored (i.e., inputs and outputs are swapped) [24] and composed with the orbital
net for the implementation. The state space is then explored using the partial order timing
analysis algorithm described earlier. If in the process of exploring the state space a failure
is detected, an error trace is returned, otherwise the timed circuit is found to implement its

timed specification.
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7.1 Behavioral Semantics

In order to verify our timed circuits, we adopt as our behavioral semantics trace theory as
defined by Dill [24] which originated with Rem, Snepscheut, and Udding [59]. We provide
structural constructions and syntactic shorthands for labeled safe Petri nets that correspond
to the behavioral semantics operations. Burch [14] extended trace theory semantics to
timed circuits; we extend this work with an operational formalism that allows timing in the
specification, and thus hierarchical timed verification.

Dill’s trace theory is based on sequences of actions, but our nets allow transitions to
be labeled with sets of actions. A trace theory based on sequences of sets of actions yields
a conformance relation that distinguishes, for instance, interleaved and concurrent actions.
In addition, composing a net that interleaves a pair of actions with another net that has
those same actions labeling one transition may lead to an unintended deadlock. We do not
attempt to resolve the complexities that arise in use of such a trace theory. Instead, we
define conservative structural conditions on the use of labels consisting of sets of actions
that allow us to use Dill’s trace theory. For instance, we cannot perform verification using
traditional trace theory on the instantaneous AND function block shown in Figure 64(b).
However, when we compose that model with the simple buffer given in Figure 64(c) and
hide the internal wire, the resulting net contains at most a single action for each transition

and traditional trace theory can be applied.
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orbital net for functional

Figure 64: (a) AND gate with inputs a and b, and output d; (b)
(2,4).

behavior; (c¢) delay buffer with input ¢, output d, and delay of
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With these semantics, untimed constructions for receptiveness and synchronization ap-
ply unchanged to the timed case. Thus, implementing verification of trace structure confor-
mance is straightforward. Determining whether an implementation conforms to a specifica-
tion is reduced to determining if any of a specific set of failure transitions can be enabled.
In addition, the trace theory operation of mirroring is also preserved, allowing hierarchical

verification.

7.2 Generating the Orbital Net Representations

To verify that our synthesized timed circuits implement their timed specifications, our ver-
ification procedure begins with the timed HSE specification and the implementation given
as a netlist of basic gates. To translate the specification to an orbital net representation,
the same procedure described earlier is used except that the timing requirement for each
behavior place in the preset of an output transition is changed to a constraint place with
timing requirement (0, co)c. These constraints must be satisfied by the timed circuit im-

plementation. Part of the specification orbital net for the SEL is shown in Figure 65.

xferjt

@
Figure 65: Part of the specification orbital net for the SEL.

For each gate in the implementation, an orbital net is constructed corresponding to an

instantaneous function block such as the one given for the AND gate in Figure 64(b). This
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net is composed with a delay element such as the one in Figure 64(c) with the behavioral
timing requirement set by the delay given in the gate library. Fach orbital net in the
implementation is composed with the other orbital nets as dictated by the connections in

the netlist.

7.3 Reporting Failures

To determine if a timed circuit implements its timed specification, the reachable state space
is found using the partial order timing algorithm for the orbital net obtained by composing
the implementation with its mirrored specification. If while exploring the state space a
failure is detected, a sequences of transitions found using a depth-first search is reported
that demonstrates the failure. This sequence, however, may be quite long, so after reporting
the failure the procedure attempts to find a shorter sequence using a breadth-first search.
Returning to the SEL, if we replace the standard C-implementation of out2, with the sum-
of-products implementation as shown in Figure 66, it fails verification, and the following

failure trace is reported:

:Ef@?“i T? Uz6 T? Selo T? datao T? 86122' T? datai T? Uz6 lv
uzz |, out2, |, uze 1, s€l, |, sel2 |, usz |, 0ut2, |

data;
sel2; % Us2
xfer; Uy out2;
Outli Ugy datao u, out2
o
afer;
out2; u1s xfer,  xfer,
afer;
xfer;
o )
*fero data
()
outl; outl
out2; Ugy out2; U29

Figure 66: Implementation of the SEL which fails verification.
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7.4 Verification Results

The verification procedure described in the previous section has been automated in the tool
Orbits written by Tom Rokicki. This tool has been incorporated into the design system
for timed circuits ATACS. Experimental results are given in Table 7 which were run on an
HP9000/735 with 144 megabytes of memory using CScheme 7.3. The left four columns
indicate values that are the same for geometric and partial order timing. The startup time
is the time required to parse the input and construct the appropriate orbital net. The
number of net nodes is the sum of the places and transitions in the resulting orbital net.
The third column gives the number of untimed states. The fourth column gives the number
of discrete states, after all timing parameters are divided by their greatest common divisor.
The next four columns give the number of geometric regions and the run time in seconds
for verification using standard geometric timing and partial order timing, respectively.
The first half of Table 7 consists of the automatically synthesized gate-level timed circuits
described above. First, we find that the number of discrete states can be quite large making
discrete-time verification difficult, if not impossible. Verification of these examples using
partial order timing is also more efficient than the geometric timing approach. Especially in
the case of the DRAM controller where the verification time is improved by over an order

of magnitude.

din dout
LT LT
I
regout
ackin |
| >0 |
\
reqin
ackout

Figure 67: Seitz queue element.

The second half of the table consists of other timed circuits and systems that exhibit a
high degree of concurrency. For example, the seitz queue element is pictured in Figure 67;
seitz2 is two connected copies of this circuit. The kyy examples [80] have thirty-seven

gates and timing parameters given to three significant digits. Where the examples ran
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out of time or space using the geometric method, often the verification was far from done.
For the seitz2 example, after one hour of CPU time, only 1,404 of the 4,572 untimed
states have been seen, yet 473,202 distinct geometric regions have been encountered. One
particular untimed state has 13,275 distinct geometric regions at this point. Partial order
timing for this example finds the entire state space as 5,820 geometric regions in one half

minute of CPU time.

Table 7: Verification results.

Startup | Net | Untimed | Discrete Geometric Partial order
Examples time nodes states states regions ‘ time regions ‘ time
SEL 2.59 770 271 6.16e5 582 1.91 358 1.76
SEL2 2.26 616 96 2033 130 0.33 102 0.29
MMU 5.94 | 2248 547 2.21e7 1163 5.22 583 2.03
DRAM 3.83 | 1326 8093 1.17e6 | 70611 | 1492.97 8899 | 98.13
TSBM 3.57 | 1464 305 49936 510 3.36 305 2.07
adv3x40 0.05 6 1 68921 | 1.52eb ‘ 164.99 1 0.01
adv4x40 0.03 8 1 2.83e6 | out of memory 1 0.01
advh0x40 0.27 100 1| 4.36e80 | out of memory 1| 60.21
phil3 0.19 149 144 27806 758 ‘ 0.77 188 0.36
phil4 0.22 197 1152 9.82eb out of time 1541 6.98
phil5 0.25 245 9840 3.47e7 out of time 14039 | 159.40
seitz 0.41 355 344 | 2.92el3 3234 ‘ 5.48 416 1.22
seitz?2 0.55 624 4572 | 5.48¢19 | out of memory 5820 | 29.79
kyyb 2.46 | 1484 5266 >1e20 | out of memory 6083 | 56.74
kyy15 1.97 | 1484 18357 >1e20 | out of memory 20250 | 321.47

Time values are given in seconds. An entry of out of time indicates that the verification
did not complete within two hours, and an entry of out of memory indicates that the
verification ran out of memory before completing.

One more thing to consider from Table 7 is the ratio of the number of regions found
using partial order timing to the number of untimed states. We find that partial order
timing often finds on average very close to one, and in all of our examples, no more than
two geometric regions for every untimed state. This means that the partial order timing

approach is achieving a near optimal representation of the timed state space.
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Appendix

The verification procedure is implemented within the tool Orbits. After ATACS has synthe-
sized a timed circuit implementation, it can be verified by Orbits using the command verify
within ATACS. This command produces a file which includes both an orbital net specification
and a description of the timed circuit implementation. If the timed circuit is gate-level, the
delay information for the library of basic gates is read in from the file library.ver. After
Orbits has completed the verification, it returns to ATACS and reports that either that
it completed successfully or that the verification failed. If it fails, a sequence of signal

transitions which exhibit the error are reported to the user.
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Conclusions

The purpose of a fish trap is to catch fish, T EHTER

and when the fish are caught, the trap is forgotten; BEmMSEE
the purpose of a rabbit snare is to catch rabbits, 6 # Pl 7E %

and when the rabbits are caught the snare is forgotten; 15 RS i
the purpose of words is to convey ideas, SHEMMER

. LB = ~— =
and when the ideas are grasped, the words are forgotten. =45 M. &
—Zhuang Zi — it 7

8.1 Summary

This thesis describes a methodology for the automatic synthesis and verification of gate-
level timed circuits. To specify timed circuits, we created the timed HSE language which
includes constructs for specifying sequencing, concurrency, and choice. The semantics of
this specification language are defined using a new formal model, timed ER structures. We
developed two timing analysis algorithms which can be used to obtain the reachable state
space for the specification of the circuit being designed. The first is a heuristic algorithm
for deterministic specifications. The second begins with a more general orbital net rep-
resentation that is automatically obtained from the timed HSE specification, and it uses
geometric regions and partial orders to efficiently represent and explore the timed state
space. We also presented efficient algorithms for the synthesis of timed circuits which ob-
tain a hazard-free timed circuit implementation using only basic gates, facilitating the use
of semi-custom components. After obtaining an initial basic gate implementation, we map

it to the given gate library using a technology mapping procedure based on resynthesis and

116



CHAPTER 8. CONCLUSIONS 117

an iterative search guided by timing information. We demonstrated the effectiveness of the
timed circuit design procedure on several practical examples, and our results indicate that
our timed circuit implementations are significantly smaller and faster than those produced
by other asynchronous and synchronous design methodologies. Finally, we verified all our
timed circuits, and we showed that partial order timing verification can handle much larger,
more concurrent examples than the standard discrete or geometric methods. By applying
systematic methods that incorporate timing into asynchronous circuit design, our proce-
dure produces both efficient and reliable implementations opening the door to the use of

asynchronous circuits in domains previously dominated by synchronous circuits.

8.2 Future Work

While we believe that the results in this thesis show that timed circuits are a very promising
alternative design style, there is much work that needs to be done in order to make it a truly
viable alternative to existing synchronous design methods. This section briefly describes the

areas that we believe to be the most important research problems which must be addressed.

8.2.1 Specification

Almost all commercial design tools for the simulation and synthesis of synchronous digital
systems employ standard hardware description languages (either Verilog or VHDL). Cur-
rent asynchronous specification methodologies (including ours described in Chapter 2) use
non-standard languages such as CSP [44], OCCAM [13], or Tangram [69]. In order to take
advantage of the excellent repertoire of existing tools and to make the transition to asyn-
chronous design easier for designers, we believe that it is necessary in the future to develop

methods and tools which use standard HDL’s.

8.2.2 Compilation

After specifying a design at a behavior-level in a standard HDL, it must be compiled to
a register-transfer-level (RTL) description, such as our timed HSE description. For every
behavioral-level specification, however, there are a multitude of possible RTL descriptions,
which make finding the optimal RTL description quite difficult. First, there are many
ways to decompose a design into smaller, synthesizable blocks. Decomposition determines

both the amount of global concurrency and the degree of pipelining, which are two major
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factors in determining overall performance. Second, the asynchronous communications
between blocks can be implemented in many ways including two-phase and four-phase
handshaking. More aggressive communication methods can also be employed in a timed
circuit that use only one wire for requests and infer the acknowledgment from circuit delays,
analogous to synchronous communication. Finally, there are many possible alternatives to
solving the state assignment problem. One method to do this is to automatically add
state variables by extending a technique such as the one described in [78] to timed circuits.
In addition, reshuffling of the placement of handshaking signals [44] or making tighter
timing assumptions can also solve the state assignment problem by removing unnecessary

concurrency.

8.2.3 Technology Mapping and Module Generation

As we saw in Chapter 5, significant improvements in area and delay can be achieved using
generalized C-elements rather than standard-cells. We have found that many generalized
C-element implementations can be mapped to precharged gates which are already found in
existing cell libraries. Also, since generalized C-elements have a regular geometry, they can
be automatically created using relatively straight-forward module generation techniques, as
demonstrated by Alain Martin of Caltech. To get high-performance designs, we believe it is
necessary to both explore mapping generalized C-element designs to cells found in existing

libraries, as well as, developing techniques to automatically generate new cells.

8.2.4 Verification

In Chapter 7, we successfully verified all our timed circuit designs by using timing analy-
sis techniques which efficiently abstract the timed state space, but state explosion of the
untimed state space is still quite computationally challenging. Comparing the number of
untimed states in verification with those found in synthesis, we see that the internal signals
in the circuit implementations cause a significant increase in the state space size. To address
this problem, we believe that the internal signal behavior can be abstracted by extending
the cube approximation technique that is successfully used to reduce the complexity of

verifying speed-independent circuits [4].
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8.2.5 Asynchronous Datapaths

There are currently two major techniques for asynchronous datapath design, bundled-data
and dual-rail. In the bundled-data approach a signal is transmitted with the data that
indicates when the data is valid, much like the clock signal in a synchronous design. While
this approach allows existing synchronous datapaths to be used, the need to delay the data
valid for the worst-case delay precludes taking advantage of average-case, data-dependent
delays. To achieve average-case performance, it is necessary to detect the completion of an
operation. This is typically done by using dual-rail logic which uses two wires to encode
both the positive and negative phase of the signal, as well as, when it is invalid. Fully
dual-rail logic can have significant area and delay overhead which can often outweigh the
advantage of average-case performance. For timed asynchronous datapath design, we believe
an approach that combines the advantages of both bundled-data and dual-rail is necessary.
One technique that we would like to explore is using domino dual-rail logic which uses
skewed cones of domino logic stages in which common paths have fewer logic stages than
less common paths. Dual-railed input signals ensure that the logic will be hazard-free, and

domino logic stages facilitate a short reset time.

8.2.6 Interfacing with Synchronous Designs

Despite the advantages of asynchronous designs, they will not immediately replace all exist-
ing synchronous designs due to existing design expertise, and they may never replace syn-
chronous designs in many domains. Systems in the future will have a mixture of synchronous
and asynchronous modules which will need to communicate at very high rates. Therefore,
it is necessary to develop methods to specify and design these mized-timed modules. This
thesis demonstrates that the timed circuit methodology can be used for fully asynchronous
circuits, asynchronous circuits which interface with synchronous environments, and even
synchronous circuits. While more research is necessary, we believe that the timed circuit

design methodology will facilitate a smooth transition to the design of mixed-timed systems.
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